

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / مني مغربي أحمد

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

1992

1992

ملاحظات: لا يوجد

TNF-α, IFN-γ and TGF-β mRNA Expression Correlation with IVF Success Rates in Women with Recurrent Implantation Failure Undergoing Treatment with Intra-lipid infusion

Thesis Submitted for partial fulfillment of the MD Degree in Medical Microbiology and Immunology

Presented by Islam Khaled Ali Harby

Master of Medical Microbiology and Immunology, Faculty of Medicine -Ain Shams University Assistant lecturer - Microbiology & Immunology Department Faculty of Medicine – Ain-Shams University.

Under Supervision of **Prof. Dr. Ola Ibrahim Ahmed**

Professor of Medical Microbiology and Immunology Faculty of Medicine - Ain Shams University

Prof. Dr. Wafaa Khalel Zaki

Professor of Medical Microbiology and Immunology Faculty of Medicine - Ain Shams University

Dr. Noha Nagi Salah El-Deen

Assistant professor of Medical Microbiology and Immunology Faculty of Medicine - Ain Shams University

Dr. Mohammed Ahmed Faris

Lecturer of Obstetrics & Gynaecology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2022

علاقة الحمض النووي الريبوزي الرسول لعامل نخر الورم الفا والانترفيرون جاما وعامل النمو التحويلي بيتا مع معدلات نجاح عمليات الاخصاب المعملي في السيدات اللواتي يعانين من فشل انغماس متكرر للاجنة بعد عمليات الاخصاب المعملي ويخضعن للعلاج باستخدام الانتراليبد بالحقن الوريدي

رسالة توطئة للحصول على درجة الدكتوراة في الميكروبيولوجيا الطبية والمناعة

مقدمة من الطبيب/ اسلام خالد علي حربي ماجستير الميكروبيولوجيا الطبية والمناعة مدرس مساعد الميكروبيولوجيا الطبية والمناعة

كلية الطب - جامعة عين شمس

تحت اشراف أ.د/ علا إبراهيم أحمد أستاذ الميكروبيولوجيا الطبية والمناعة كلية الطب - جامعة عين شمس

أ.د/ وفاع خليل زكي أستاذ الميكروبيولوجيا الطبية والمناعة كلية الطب - جامعة عين شمس

د/ نهى ناجى صلاح الدين أستاذ مساعد الميكروبيولوجيا الطبية والمناعة كلية الطب - جامعة عين شمس د/ محمد أحمد فارس مدرس بقسم النساء والتوليد كلية الطب جامعة عين شمس

كلية الطب جامعة عين شمس ٢٠٢٢

First, thanks are all due to Allah for Blessing this work until it has reached its end, as a part of his generous help throughout our life.

My profound thanks and deep appreciation to **Prof. Dr. Ola Ibrahim Ahmed**, Professor of Medical Microbiology and Immunology, Faculty of Medicine - Ain Shams University for her great support and advice, her valuable remarks that gave me the confidence and encouragement to fulfill this work.

I am deeply grateful to **prof.Dr. Wafaa Khalel Zaki**, Professor of Medical Microbiology and Immunology, Faculty of Medicine - Ain Shams University for adding a lot to this work by her experience and for her keen supervision.

I am also thankful to **Dr. Noha Nagi Salah El-Deen**, Assistant professor of Medical Microbiology and Immunology, Faculty of Medicine - Ain Shams University for her valuable supervision, co-operation and direction that extended throughout this work.

I would like to direct my special thanks to **Dr. Mohammed**Ahmed Faris, Lecturer of Obstetrics & Gynaecology, Faculty of

Medicine - Ain Shams University, for his invaluable help, fruitful

advice, continuous support offered to me and guidance step by step till

this essay finished.

I am extremely sincere to my family who stood beside me throughout this work giving me their support.

Words fail to express my love, respect, and appreciation to my wife for her unlimited help and support.

List of Contents

	Page
Acknowledgment	i iv
Introduction	1
Aim of The Work	5
Review of Literature	6
Chapter 1: Pregnancy and Immune System	6
I.cytokines in normal pregnancy	7
II.Decidua.	10
 A. Trophoblastic invasion. B. Spiral artery remodeling. C. Homeostasis and tolerance. D. Altered decidual cytokines. 1. IL-6. 2. CXCL8/IL-8. 3. TNF-α. 4. IFN-γ 	11 12 13 13
	32
III.Role of regulatory T-cells in pregnancy maintenan IV. Therapeutic potential of regulatory T-cells in	ce.35
V. Costimulatory molecules in programay maintenance	
V.Costimulatory molecules in pregnancy maintenance	ว บ

VI.Human Granulocyte Colony stimulating factor role is pregnancy outcome.	
Chapter 2: Infertility demography	56
Chapter 3: Recurrent IVF failure	69
Chapter 4: Intravenous lipid emulsion therapy overview	73
Patients and Methods	8۳
Results	90
Discussion	10٦
Summary	11۳
Conclusion	117
Recommendations	114
References	11۸
Arabic Summary	

List of Abbreviations

AF : Accessory factor

AIDS : Acquired Immune Deficiency Syndrome.

AMV-RT: Avian Myeloblastosis Virus Reverse

Transcriptase.

APA : Anti-phospholipid antibodies

APC : Antigen presenting cells

ART : Assisted reproductive technique

BMI : Body mass index

CBRC : Cross-border reproductive care

cDNA : complentary DNA.

CNS1 : Conserved noncoding sequence 1

CSF : Colony stimulating factor

CTB : Cytotrophoblast

CTLA4 : Cytotoxic T-lymphocyte antigen 4DHSs : Demographic and Health Surveys

DNA : Deoxyribonucleic acid

dNTPs : Deoxynucleotide triphosphate

E2 : Estradiol

ECM : Extracellular matrix

EDTA : Ethylene Diamine Tetraacetic Acid.

EPA : Eicosapentaenoic acid

ESHRE: European Society of Reproduction and

Embryology

ET : Embryo transfer

EVT : Extra-villous trophoblast cells FADD : FAS-associated death domain

FAS : Fatty acid synthesis

FET : Frozen Embryos Transfer.FSH : Follicle stimulating hormone

GDNF : Glial cell-derived neurotrophic factor

HCG : Human Chorionic Gonadotropin
 HIV : Human immunodeficiency virus
 HMG : Human Menopausal Gonadotropin
 HVEM : herpes virus entry mediator.

ICPD: International Conference on Population and

Development

ICSI : Intracytoplasmic Sperm InjectionIDO : Indoleamine 2,3-dioxygenase

IFFS : International federation of fertility societies

IFN: Interferon

IFN-γ : Interferon-gamma

IL : Intralipid

IQR : Interquartile rangeIVF : In vitro fertilization

IVFE : Intravenous fat emulsion

IVIg : Intravenous immunoglobulinIVIG : Intravenous immunoglobulin.

IVIG : Intravenous immunoglobulin. G

KIR : Killer-cell immunoglobulin-like receptors

LCIVF : Low-cost IVF

LH : Luteinizing hormone.

LIT : Lymphocyte immunization therapy
M-CSF : Monocytes colony stimulating factor

MMPs : Matrix metallo-proteinasesmRNA : Messenger ribonucleic acid

MUC-1: Mucin

NK : Natural killerNKT : Natural killer TNS : Non-significant

PBMC : Peripheral blood mononuclear cells

PBS : Phosphate Buffer Saline.

PD1 : Programmed Death-1

PE : Pre-eclampsia

PPARs : Peroxisome proliferator-activated receptors

RIF : Recurrent implantation failure

RNA : Ribonucleic acid

RNase: Ribonuclease

RPL : Recurrent pregnancy lossRQ : Relative Quantification

RTIs : Reproductive tract infections

RT-PCR: Real-time polymerase chain reaction

S : Significant.

SD : Standard deviation

sHLA : Soluble human leukocyte antigen
 sPIF : Synthetic pre-implantation factor
 STIs : Sexually transmitted infections
 TGF : Transforming growth factor

TGF-β : Transforming growth factor-beta

Th : Thelper

TNF : Tumour necrosis factor

TNF-α : Tumor necrosis factor-alphaTNFR : Tumor necrosis factor receptor.

TRADD: Tumor necrosis factor receptor type 1-associated

DEATH domain protein.

TSH: Thyroid stimulating hormone.
 uNk: uterine natural killer cells.
 VSMC: Vascular smooth muscle cell
 WHO: World Health Organization
 WOI: Window of implantation.

List of Figures

List of Figures		
Fig.	Title	Page
1	Van der Waals surface of the lymphotoxin-	19
	TNFb (left) and the TNF- α (right) trimers.	
2	A: Complete structure of the extracellular	20
	domain of TNFR-1. Reproduced from	
	Naismith et al. (1996) with permission of the publisher. B: Van der Waals surface of the	
	TNFb trimer (magenta) complexed with its	
	receptor (purple); water molecules are shown	
_	in blue.	
3	Structure of the murine TNF locus.	25
4	T-regs develop in the thymus because of	40
	positive selection between TCR and host	
	antigens.	
5	Relationship between T-regs, cytokines and	41
	feto-maternal tolerance.	
6	FOXP3+ expression in naïve lymphocytes	47
7	Normal pregnancy and por outcome	55
8	Images of high-grade embryos, A: Day 3: 8-	70
	cell embryo; B: Day 5: blastocyst; C: Day 5-	
9	hatching blastocyst Bar-Chart showing Pre-Treatment TNF-α,	96
	IFN- γ and TGF- β mRNA Expression in	70
	Included Women.	
10		97
10	Bar-Chart showing Post-Treatment TNF-α,	91
	IFN- γ and TGF- β mRNA Expression in Included Women.	
11		00
11	Bar-Chart showing Difference between Pre-	98
	and Post-Treatment TNF-α mRNA Expression	
	in Included Women.	

Fig.	Title	Page
12	Bar-Chart showing Difference between Preand Post-Treatment IFN-γ mRNA Expression in Included Women.	99
13	Bar-Chart showing Difference between Preand Post-Treatment TGF-β mRNA Expression in Included Women.	100
14	Bar-Chart showing Association between Positive Pregnancy Outcomes and Change in TNF-α mRNA Expression in Included Women.	102
15	Bar-Chart showing Association between Positive Pregnancy Outcomes and Change in IFN-γ mRNA Expression in Included Women.	103
16	Bar-Chart showing Association between Positive Pregnancy Outcomes and Change in TGF-β mRNA Expression in Included Women .	104

List of Tables

Table	Title	Page
1	c DNA master mix components.	90
2	Reagents and volumes added.	91
3	Running condition for RT-PCR.	92
4	Primer sequences used for real-time polymerase chain reaction.	92
5	Initial Characteristics of Included Women.	94
6	Basal Serum Hormonal Profile (FSH, LH, Prolactin and TSH) in Included Women.	95
7	Pre-Treatment TNF-α, IFN-γ and TGF-β mRNA Expression in Included Women.	95
8	Post-Treatment TNF-α, IFN-γ and TGF-β mRNA Expression in Included Women.	96
9	Paired Differences between Pre- and Post- Treatment TNF- α mRNA Expression in Included Women.	97
10	Paired Differences between Pre- and Post- Treatment IFN-γ mRNA Expression in Included Women.	98

Table	Title	Page
11	Paired Differences between Pre- and Post-	99
	Treatment TGF-β mRNA Expression in	
	Included Women.	
12	IVF/ICSI Cycle Outcomes in Included	100
	Women.	
13	Pregnancy Outcome in Included Women.	101
14	Association between Positive Pregnancy	101
	Outcomes and Change in TNF-α mRNA	
	Expression in Included Women.	
15	Association between Positive Pregnancy	103
	Outcomes and Change in IFN-γ mRNA	
	Expression in Included Women.	
16	Association between Positive Pregnancy	104
	Outcomes and Change in TGF-β mRNA	
	Expression in Included Women.	

Abstract

This study aimed at assessing the correlatons between gene expression of TNF-a, IFN-γ, TGF-β in peripheral lymphocytes from women sufering from repeated implantation failure before and afer intravenous Intra-lipid (IL) therapy, and correlaton between changes in gene expression with IL infusion and success rate of IVF cycles. Twentythree women complaining of unexplained infertlity without history of autoimmune disorders, or immunodefcient diseases were included. All women included aged <40 years, BMI <28 with history of recurrent IVF cycles failure, seeking medical advice for new IVF trial. All were average responders to inducton of ovulaton (>5 oocytes in each cycle) with good quality embryos transferred to uterus at proper tme. Included women received 200 ml of 10% IL slowly intravenous. Two venous blood samples were taken from all candidates, one before IL infusion and the second was at day of embryo transfer. The current study detected a significant reduction of expression in TNF-a and increased expression of TGF-β, while non-significant reduction in expression of IFN-γ afer treatment. Significant associations between reduction of TNFα, IFN-γ expression and positive clinical and ongoing pregnancy were observed, while increased TGF-β expression was associated with only positve ongoing pregnancy. In conclusion, IL therapy might have a positve impact on IVF pregnancy rates via alteratons in peripheral cytokines expression mainly reducton of TNF-a mRNA expression and increased TGF-b mRNA expression.

Keywords: Intralipid Therapy, IVF failure, IFN-γ, TNF-a, TGF-β

Introduction

Pregnancy is a unique immunological challenge in which the antigenically distinct fetus and placenta develop in the uterus of the mother. For the conceptus to implant and for pregnancy to be maintained, the conceptus must protect itself from the maternal immune system. This involves a balance between maternal immune defence mechanisms and invasion by the allogenic trophoblast (*Noronha and Antczak*, 2010).

IVF (in vitro fertilization) success rates, the percentage of all IVF procedures which result in a favourable outcome, this outcome may represent the number of confirmed (confirmed by serum pregnancies Human Chorionic Gonadotrophin β-HCG), Also called the pregnancy rate (Firouzabadi et al., 2016).

Accordingly, different fertility centres practicing IVF may use different definitions for recurrent implantation failure (RIF), Recent definition of RIF is: failure of implantation in at least two consecutive IVF attempts, in which 1–2 embryos of high grade quality are transferred in each cycle (Shufaro and Schenker, 2011).

The process of implantation involves two main components, a healthy embryo that should have the potential to implant and a receptive endometrium that should enable implantation. The "cross-talk" between the embryo and the endometrium that finally leads to apposition, attachment and invasion of embryos is mandatory for successful implantation and subsequent normal placentation. These processes seem to