

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / مني مغربي أحمد

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

1992

1992

ملاحظات: لا يوجد

Investigation of Some Factors Affecting the Efficiency of Solid State Nuclear Track Detectors for Alpha-Particles

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree Of Master of Science in physical degree

By Magda Naeem Habib

Physics Department Faculty of Science, Ain Shams University Egypt

Supervisors

Prof. Dr. Nabil Ali El-Faramawy	Prof. Dr. Arafa Ibrahim Abd El-Hafez	
Professor of Nuclear and Radiation	Professor of Ionizing Radiation	
Physics Physics Department, Ain	Metrology Laboratory National Institute	
Shams University	for Standards	

Physics Department Faculty of Science Ain Shams University

Name: Magda Naeem Habib

Title: Investigation of Some Factors Affecting the Efficiency of Solid State Nuclear Track Detectors for Alpha-Particles

Degree: Master of Science in physics

Thesis supervisor:

1-Prof. Dr. Nabil Ali El-Faramawy

Professor of Nuclear and Radiation Physics Physics Department Ain Shams University

2- Prof. Dr. Arafa Ibrahim Abd El-Hafez

Professor of Ionizing Radiation Metrology Ionizing Radiation Metrology Department Laboratory National Institute for Standards

Physics Department Faculty of Science Ain Shams University

Name: Magda Naeem Habib

Title: Investigation of Some Factors Affecting the Efficiency of Solid State Nuclear Track Detectors for Alpha-Particles

Degree: Master of Science in physics

Thesis supervisor:

1-Prof. Dr. Nabil Ali El-Faramawy

Professor of Nuclear and Radiation Physics Physics Department Ain Shams University

2- Prof. Dr. Arafa Ibrahim Abd El-Hafez

Professor of Ionizing Radiation Metrology Ionizing Radiation Metrology Department

Examination committee

- **1- Prof. Dr. Nabil Ali El-Faramawy** Professor of Nuclear and Radiation Physics Physics Department Ain Shams University
- **2- Prof. Dr. Arafa Ibrahim Abd El-Hafez** Professor of Ionizing Radiation Metrology Ionizing Radiation Metrology Department Laboratory National Institute for Standards
- **3-Prof. Dr. Mohamed El-Sayed El-Nagdy** Professor of Nuclear and Radiological Physics Department of Physics Faculty of Science Helwan University
- **4- Prof. Dr. Tarek Mohamed El-Desouky** Professor of Nuclear Physics Department of Physics College of Girls Ain Shams University

Approval Stamp
/ / 2022
Approval of Faculty Council
/ / 2022

Date of Approval
/ / 2022
Approval of Faculty Council
/ / 2022

ACKNOWLEDGMENT

I am pleased to extend my sincere thanks and appreciation, to **Prof. Dr. Nabil Ali Al-Farmawy**, Professor of Nuclear and Radiological Physics and Chairman of the Board of Physics Department, Faculty of Science, Ain Shams University, for all the support and supervision. He provided me with that helped me complete this work successfully.

I would also like to thank and appreciate **Prof. Dr. Ibrahim Abdel Hafez**, Professor of Radiation Metrology - National Calibration Institute, for his assistance and supervision that helped to accomplish this work. I also extend my thanks and appreciation to **Prof. Dr. Mahmoud Abo-Magd** at the National Calibration Institute for his assistance as well.

I thank all those who helped me from the colleagues in the radiological measurements lab, Faculty of Science, Ain Shams University

A special thanks to my family for their love and assistance, whether material or moral, which made this work possible.

CONTENTS	Page
LIST OF FIGURES	I
LIST OF TABLES	IX
LIST OF SAMPLES	X
SUMMERY	XII
CHAPTER ONE: THEORETICAL ASPECTS	
1.1. ENERGETIC ION INTERACTIONS WITH POLYMERS	1
1.2. SOLID STATE NUCLEAR TRACK DETECTORS	3
1.2.1. Principals of SSTNDs	3
1.2.2. Formation of Particle Tracks	4
1.3. TYPES OF SOLID-STATE NUCLEAR TRACK DETECTORS	4
1.3.1. Inorganic Detectors	4
1.3.2. Organic Detectors	5
1.4. TRACK FORMATION MECHANISMS	5
1.5. TRACK FORMATION MECHANISM MODELS	6
1.5.1. Ion-Explosion Spike Model	6
1.5.2. Radiochemical Damage Mechanism Model	7
1.6. TYPE OF DETECTORS	8
1.6.1. CR-39 Detectors	8
1.6.2. LR-115 Detectors	9
1.7. THE CHEMICAL ETCHING	10
1.8. GEOMETRY OF THE TRACK	11
1.9. KEEP TRACK OF THE VARIABLES THAT HAVE AN IMPACT.	12
1.9.1 The Bulk Etch Rate Velocity (V _B)	12
1.9.2. The Track Etch Rate Velocity (V _T)	13
1.9.3. Engraving Sensitivity and Efficiency	14

1.10. VISUALIZATION AND EVALUATION OF THE TRACK	15
1.10.1. Electron Microscope	15
1.10.2. Optical Microscope	15
1.11. THE BENEFITS OF SSNTD'S 1.11.1. SSNTDs have a Disadvantage.	16
1.12. FLUX DENSITY FOR DIFFERENT SOURCE GEOMETRY	17
1.12.1. Point Source S	18
1.12.2. Line Source S _L	19
1.12.3. Area Source S _A	21
1.12.4: Slab Source Infinite	22
1.12.5: Spherical Source	24
CHAPTER TWO: LITERATURE SURVEY	
2.1. PREVIOUS WORK	25
CHAPTER THREE: EXPERIMENTAL TECHNIQUES	
3.1. MATERIALS USED	56
3.1.1. Radioactivity Source and Irradiation Method	56
3.1.2. The Radioactive Decay Equation	57
3.1.3. The Activity	57
3.1.4. Alpha Range Determination	58
3.1.5. Solid State Nuclear Track Detector (CR-39)	59
3.1.6. Abrasive Chemical	60
3.2. DEVICES USED	61
3.2.1. Water Bath	61
3.2.2. Sensitive Balance	61
3.2.3. Measurement by Using Optical Microscope	62
3.3. OPTICAL MICROSCOPE SYSTEM FOR READING TRACKS	63
3.4. PREPARATION OF THE PROGRAMS	64

3.5.THE ADDITIVES	64
CHAPTER FOUR: RESULTS AND DISCUSSIONS	
4.1. RELATION BETWEEN THE ENERGY OF ALPHA PARTICLES AND THE DISTANCE BETWEEN THE SOURCE AND THE DETECTOR	65
4.2. RELATION BETWEEN THE ALPHA ENERGY AND THE RANGE OF ALPHA PARTICLES IN AIR	66
4.3. RELATIONSHIP BETWEEN THE FLUENCE OF ALPHA PARTICLES AND THE TRACK DENSITY FOR THE DIFFERENT ENERGIES AND THE ETCHING TIMES.	67
4.3.1. Relationship between the Fluence of Alpha Particles and the Track Density when the Etching Time Fixing at 2 h for the Different Energies.	67
4.3.2. Relationship between the Fluence of Alpha Particles and the Track Density when the Etching Time Fixing at 4 h for the Different Energies.	67
4.3.3. Relationship between the Fluence of Alpha Particles and the Track Density at Etching Times 5 and 6 h for the Different Energies.	68
4.3.4. Relationship between the Fluence of Alpha Particles and the Track Density at Etching Times 7 and 8 h for the Different Energies.	69
4.3.5. Relationship between the Fluence of Alpha Particles and the Track Density at Etching Times 9 and 10 h for the Different Energies.	70
4.3.6. Relationship between the Fluence of Alpha Particles and the Track Density when the Etching Time Fixing at 12 h for the Different Energies.	71
4.4. RELATIONSHIP BETWEEN THE ETCHING TIME AND THE TRACK DENSITY FOR THE ALL ENERGIES AT THE DIFFERENT FLUENCE OF ALPHA	72
4.5. RELATIONSHIP BETWEEN THE ETCHING TIMES AND THE TRACK DENSITY FOR THE DIFFERENT ENERGIES FROM 1 TO 5 MEV AND THE FLUENCE OF ALPHA PARTICLES	74
4.5.1. Relationship between the Etching Time and the Track Density for the Different Energies from 1 to 5 MeV at the Low Fluence of alpha.	74

4.5.2. Relationship between the Etching Time and the Track Density for the Different Energies from 1 to 5 MeV during the Incrementally Increased Fluence of Alpha.	75
4.5.3. Relationship between the Etching Time and	
the Track Density for the Different Energies from 1	76
to 5 MeV at the High Fluence of alpha.	, 0
4.6. RELATIONSHIP BETWEEN THE ENERGY OF	
ALPHA PARTICLES AND THE TRACK	
DIAMETER.	
4.6.1. Relationship between the Energy of Alpha and	77
the Track Diameter from the Low Fluence of alpha	
particles to the High Fluence.	
4.7. RELATIONSHIP BETWEEN THE ETCHING	
TIMES AND THE TRACK DIAMETERS.	
	79
4.7.1. Relationship between the Etching Times and	19
the Track Diameters from the Low Fluence of	
alpha particles to the High Fluence.	
4.8. RELATIONSHIP BETWEEN THE ETCHING	0.1
TIMES AND THE EFFICIENCY OF ALPHA	81
PARTICLES FOR THE DIFFERENT ENERGIES.	
4.9 RELATIONSHIP BETWEEN THE ETCHING TIMES	85
AND ALL PARAMETERS.	05
4.9.1. Relationship between the Etching Time and	85
the Bulk Etch Rate.	63
4.9.2. Relationship between the Etching Time and	97
the Track Etch Rate.	87
4.9.3. Relationship between the Etching Time and	0.0
the Track Etch Rate Ratio	88
4.9.4. Relationship between the Etching Times and	
the Critical Angle	90
4.9.5. Relationship between the Etching Time and	
the Track Length	91
4.9.6 Relationship between the Etching Time and	
_	93
the Track Depth	
4.9.7. Relation between the Etching Times and the	94
Etching Efficiency	
4.10. RELATIONSHIP BETWEEN 1 ML OF THE	
DIFFERENT ADDITIVES AND HYDROXIDE	96
SODIUM FOR THE ENERGY 3 MEV AFTER 6 h	
OF THE ETCHING TIME	

4.10.1. Relation between the Different Additives and the Track Density and Diameter.	96
4.10.2. Relation between the Different Additives and the Bulk Each Rate	98
4.10.3. Relation between the Different Additives and the Track Each Rate	99
4.10.4. Relation between the Different Additives and the Track Each Rate Ratio.	99
4.10.5. Relation between the Different Additives and the Critical Angle.	100
4.10.6. Relation between the Different Additives and the Track Depth and Length	101
4.10.7. Relation between the Different Additives and the etching Efficiency.	103
4.11. RELATIONSHIP BETWEEN 4 ML OF THE DIFFERENT ADDITIVES AND HYDROXIDE SODIUM FOR THE ENERGY 3 MEV AFTER 6 h OF THE ETCHING TIME.	104
4.11.1. Relation between the Different Additives and the Track Density and Diameter.	104
4.11.2. Relation between the Different Additives and the Bulk Etch Rate	106
4.11.3. Relation between the Different Additives and the Track Etch Rate	106
4.11.4. Relation between the Different Additives and the Track Etch Rate Ratio	107
4.11.5. Relation between the Different Additives and the Critical Angle	108
4.11.6. Relation between the Different Additives and the Track Depth and Length.	109
4.11.7. Relation between the Different Additives and the Etching Efficiency	111
REFERENCES	112
CONCLUSIONS	120
ARABIC SUMMERY	
FUTURE WORK AND RECOMMENDATIONS	

List of Figures

Figure No	Title	
Figure (1.1)	Ion–Explosion Spike Model	7
Figure (1.2)	Track Formation in Polymers	
Figure (1.3)	Normally, particle track geometry penetrates a detector material.	11
Figure (1.4)	Diagram of Point Source	18
Figure (1.5)	Line Source	19
Figure (1.6)	Line Source	20
Figure (1.7)	Area Source	21
Figure (1.8)	Volume Source	23
Figure (1.9)	Spherical source	24
Figure (3.1)	Shows the ²⁴¹ Am radiation facility in the National Institute of Standard, Egypt	56
Figure (3.2)	Different Collimators	59
Figure (3.3)	CR -39 Detector	60
Figure (3.4)	Water Bath	61
Figure (3.5)	Sensitive Balance	62
Figure (3.6)	Optical Microscope	62
Figure (3.7)	Optical Microscope System For Reading Tracks	63
Figure (4.1)	Relationship between the alpha energy and the distance.	66
Figure (4.2)	Relationship between the energy of alpha and the range in air.	66

Figure (4.3)	Relationship between the fluence of alpha particles and the track density at 2h etching time for different energies at 6.25 N NaOH at 70°C	67
Figure (4.4)	The relationship between the fluence of alpha and the track density at 4h etching time for different energies at 6.25 N NaOH at 70°C.	68
Figure (4.5)	Relationship between the fluence of alpha and the track density at 5h etching time for different energies at 6.25 N NaOH at 70°C	69
Figure (4.6)	Relationship between the fluence of alpha and the track density at 6h etching time for different energies at 6.25 N NaOH at 70°C.	69
Figure (4.7)	Relationship between the fluence of alpha and the track density at 6h etching time for different energies at 6.25 N NaOH at 70°C	70
Figure (4.8)	Relationship between the fluence of alpha and the track density at 8h etching time for different energies at 6.25 N NaOH at 70°C	70
Figure (4.9)	Relationship between the fluence of alpha and the track density at 9h etching time for different energies at 6.25 N NaOH at 70°C	71
Figure (4.10)	Relationship between the fluence of alpha and the track density at 10h etching time for different energies at 6.25 N NaOH at 70°C	71
Figure (4.11)	Relationship between the fluence of alpha and the track density at 12h etching time for different energies at 6.25 N NaOH at 70°C	72
Figure (4.12)	Relationship between the etching time and the track density in different exposure times for energy 1 MeV at 6.25 N NaOH at 70° C	73
Figure (4.13)	Relationship between the etching time and the track density in different exposure times for energy 2 MeV at 6.25 N NaOH at 70° C	73
Figure (4.14)	Relationship between the etching time and the track density in different exposure times for energy 3 MeV at 6.25 N NaOH at 70° C	73
Figure (4.15)	Relationship between the etching time and the track density in different exposure times for energy 4 MeV at 6.25 N NaOH at 70° C	73

Figure (4.16)	Relationship between the etching time and the track density in different exposure times for energy 1 MeV at 6.25 N NaOH at 70° C	74
Figure (4.17a)	Relationship between the etching time and the track density for the different energies from 1 MeV to 5 MeV during the low fluence of alpha at 6.25 N NaOH at 70°C	75
Figure (4.17b)	Relationship between the etching time and the track density for the different energies from 1 MeV to 5 MeV during the increased fluence of alpha at 6.25 N NaOH at 70°C	75
Figure (4.18)	Relationship between the etching time and the track density for the different energies from 1 MeV to 5 MeV during the incrementally increased fluence of alpha at 6.25 N NaOH at 70°C	76
Figure (4.19a)	Relationship between the etching time and the track density for the different energies from 1 MeV to 5 MeV during the high fluence of alpha at 6.25 N NaOH at 70°C	77
Figure (4.19b)	Relationship between the etching time and the track density for the different energies from 1 MeV to 5 MeV during the very high fluence of alpha at 6.25 N NaOH at 70°C	77
Figure (4.20a)	Relationship between the energies of alpha and the track diameter for the different etching times during the low fluence of alpha at 6.25 N NaOH at 70°C	78
Figure (4.20b)	Relationship between the energies of alpha and the track diameter for the different etching times during the incrementally increased fluence of alpha at 6.25 N NaOH at 70°C	78
Figure (4.20c)	Relationship between the energies of alpha and the track diameter for the different etching times during the high fluence of alpha at 6.25 N NaOH at 70°C	78
Figure (4.20d)	Relationship between the energies of alpha and the track diameter for the different etching times during the very high fluence of alpha at 6.25 N NaOH at 70°C	78

Figure (4.21a)	Relationship between the etching times and the track diameters for the different energies during the low fluence of alpha at 6.25 N NaOH at 70°C	80
Figure (4.21b)	Relationship between the etching times and the track diameters for the different energies during the incrementally increased fluence of alpha at 6.25 N NaOH at 70°C	80
Figure (4.21c)	Relationship between the etching times and the track diameters for the different energies during the high fluence of alpha at 6.25 N NaOH at 70°C	80
Figure (4.21d)	Relationship between the etching times and the track diameters for the different energies during the very high fluence of alpha at 6.25 N NaOH at 70°C	80
Figure (4.22a)	Relationship between the etching times and the efficiency of alpha for the different energies during the low fluence of alpha at 6.25 N NaOH at 70°C	84
Figure (4.22b)	Relationship between the etching times and the efficiency of alpha for the different energies during the incrementally increased fluence of alpha at 6.25 N NaOH at 70°C	84
Figure (4.22c)	Relationship between the etching times and the efficiency of alpha for the different energies during the high fluence of alpha at 6.25 N NaOH at 70°C	85
Figure (4.22d)	Relationship between the etching times and the efficiency of alpha for the different energies during the very high fluence of alpha at 6.25 N NaOH at 70°C	85
Figure (4.23a)	Relationship between the etching times and the bulk etch rate for the different energies during the low fluence of alpha at 6.25 N NaOH and 70°C	86
Figure (4.23b)	Relationship between the etching times and the bulk etch rate for the different energies during the incrementally increased fluence of alpha at 6.25 N NaOH and 70°C.	86