

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Translucency & Flexural strength of three lithium disilicate ceramic materials for CAD/CAM restorations (In Vitro Study)

Thesis

Submitted for Partial Fulfilment of Master Degree Requirements in Fixed Prosthodontics, Faculty of Dentistry, Ain Shams University

By

Shorouk Hossam Eldin Hussien Amin

B.D.S

Misr International University
2014

Faculty of Dentistry

Ain Shams University

2022

Supervisors

Prof Dr. Tarek Salah Morsi

Professor of Fixed Prosthodontics,
Fixed prosthodontics Department
Faculty of Dentistry, Ain Shams University

Dr. Maged Mohammed Zohdy

Assistant Professor of Fixed Prosthodontics, Fixed Prosthodontics Department

Faculty of Dentistry, Ain Shams University

Acknowledgement

First thanks are for **ALLAH**, the Most Gracious and the Most Merciful, all praises to Allah for the strengths and his blessings in completing this thesis.

I would like to express my deepest thanks and sincere gratitude as well as appreciation to Dr. Tarek Salah Morsi, Professor of fixed prosthodontics, Fixed prosthodontics Department, Faculty of Dentistry, Ain Shams University, for his sincere effort, precise advice, and valuable comments throughout this work which could have never been accomplished without his extraordinary assistance and genuine guidance.

My deepest appreciation and special thanks to Dr. Maged Mohammed Zohdy, Assistant professor of fixed prosthodontics, Fixed prosthodontics Department, Faculty of Dentistry, Ain Shams University, for his valuable guidance, help, time and effort throughout the details of every part of this work, in addition to his unique support, cooperation and continuous advice.

Last but not least, deepest thanks and appreciation to all my professors and colleagues in the fixed prosthodontics department for supporting and guiding me.

Dedicated to

My Dad

Who raised me to be a hard worker and always encouraged me.

My Mom

Who supported and inspired me in every possible way and endless prayers and to whom I owe too much. Who is always there for me, giving me the strength to carry on. The one who I don't know what I would have done without her.

My Husband

My loving husband **Abdulrahman**, My support system and backbone for his patience, concern, love, devotion, friendship, humor, assistance and support. Love you, endless thanks and gratitude.

My sisters

Nourhan and **Safaa** whom I shared a lot of beautiful memories and hard times had become easier with their presence. I could not do anything without you.

For all the love and support you all gave me, I hope I had made you proud.

List of Content

Title	Page No.
List of Tables	i
List of Figures	ii
Introduction	1
Review of Literature	4
Statement of the Problem	33
Aim of the Study	34
Material and methods	35
Results	57
Discussion	69
Summary	82
Conclusion	84
Recommendation	85
References	86
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Ceramics used in this study	35
Table (2):	Chemical composition of E.max cad block by wt.%	36
Table (3):	Physical properties of E.max cad block	36
Table (4):	Chemical composition of Rosetta SM block	37
Table (5):	Physical properties of Rosetta SM block	38
Table (6):	Chemical composition of Upcera block	39
Table (7):	Physical properties of Upcera block	39
Table (8):	Sample grouping	
Table (9):	Crystallization parameters for E.max CAD	47
Table (10):	Crystallization parameters for Rosetta	48
Table (11):	Crystallization parameters for Upcera CAD	49
Table (12):	Descriptive statistics for translucency parameter (TP)) for
	different groups	57
Table (13):	Effect of different variables and their interactions	on
	translucency parameter (TP)	58
Table (14):	Mean ± standard deviation (SD) of transluce	ency
	parameter (TP) for different materials and thicknesses	
Table (15):	Mean ± standard deviation (SD) of transluce	•
	parameter (TP) for different materials	
Table (16):	Mean ± standard deviation (SD) of transluce	
	parameter (TP) for different thicknesses	
Table (17):	Descriptive statistics for biaxial flexural strength (M	•
	for different groups	
Table (18):	Effect of different variables and their interactions	
	biaxial flexural strength (MPa)	
Table (19):	Mean ± standard deviation (SD) of biaxial flex	
	strength (MPa) for different materials and thicknesses	
Table (20):	Mean ± standard deviation (SD) of biaxial flex	
	strength (MPa) for different materials	
Table (21):	Mean ± standard deviation (SD) of biaxial flex	
	strength (MPa) for different thicknesses	67

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Overview of the proposed classification system of all-ceramic and ceramic-like materials	
Figure (2):	E.max CAD block	35
Figure (3):	Rosetta SM block	37
Figure (4):	Upcera blocks	38
Figure (5):	Universal tool grinder machine grinding the blocks of each material into cylinders.	
Figure (6):	Insize digital caliper checking the diameter of cylinder of each block after grinding.	
Figure (7):	IsoMet TM 4000 Linear Precision Saw	43
Figure (8):	The diamond disc slicing the cylinder into discs	43
Figure (9):	Checking the thickness of each disc using Insize digital caliper (a) 1mm (b) 0.5mm	
Figure (10):	IPS e.max CAD Crystall Glaze Paste	45
Figure (11):	Glazing applied using Profi Renfert Glazing Brush.	45
Figure (12):	Discs placed on honeycomb tray for firing	46
Figure (13):	Glazing and crystallization of the specimens using Ivoclar Vivadent Programat P310 Furnace	
Figure (14):	Firing cycle of E.max CAD	47
Figure (15):	Firing cycle of Rosetta SM	48
Figure (16):	Firing cycle of Upcera CAD	49
Figure (17):	Thermocycler	50
Figure (18):	Backing the discs with white and black backgrounds using 'Agilent Cary 5000 spectrophotometer'	
Figure (19):	Universal testing machine Instron-3345	52
Figure (20):	Disc supporting platform with the three symmetrically spaced steel balls	
Figure (21):	Load applied at the center of the specimen	53

List of Figures

Fig. No.	Title	Page No.
Figure (22):	Close-up view of metallic platform, steel ball ceramic disc and piston	
Figure (23):	Load applied on the specimen till fracture occurre	d 54
Figure (24):	Box plot showing translucency parameter (The value for different groups	
Figure (25):	Bar chart showing average translucency parameter (TP) for different materials and thicknesses (A)	
Figure (26):	Bar chart showing average translucency parameter (TP) for different materials and thicknesses (B)	
Figure (27):	Bar chart showing average translucency parameter (TP) for different materials	
Figure (28):	Bar chart showing average translucency paramete (TP) for different thicknesses	
Figure (29):	Box plot showing biaxial flexural strength (MPa value for different groups	
Figure (30):	Bar chart showing average biaxial flexural strengt (MPa) for different materials and thicknesses (A)	
Figure (31):	Bar chart showing average biaxial flexural strengt (MPa) for different materials and thicknesses (B)	
Figure (32):	Bar chart showing average biaxial flexural strengt (MPa) for different materials	
Figure (33):	Bar chart showing average biaxial flexural strengt (MPa) for different thicknesses	