

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / مني مغربي أحمد

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

1992

1992

ملاحظات: لا يوجد

A Comparative Analysis of Shear Bond Strength and Translucency of Two Different Lithium Disilicate Materials

Thesis

Submitted to the Faculty of Dentistry - Ain Shams University for Partial Fulfillment of the Requirements for Master's Degree in Fixed Prosthodontics

By

Gamaleldin Mohamed Elbouchy

(B.D.S., Ain Shams University - 2011)

Faculty of Dentistry Ain Shams University 2022

SUPERVISORS

Prof. Dr. Tarek Salah el Din Morsi

Professor of Fixed Prosthodontics Department

Faculty of Dentistry

Ain Shams University

Dr. Ahmed Ezzat Sabet

Associate professor and Head of Fixed Prosthodontics Department

Faculty of Dentistry

British University in Egypt (BUE)

Acknowledgement

First and forever thanks to God for all his kindness and grace for granting me the patience and enthusiasm to accomplish this work.

No words could be sufficient for expressing my supervisor **Prof. Dr. Tarek Salah,** Professor and head of Fixed Prosthodontics Department, Faculty of Dentistry, Ain-Shams University for his immense support, fruitful criticism and infinite encouragement, making it possible to carry this work forward.

To **Dr. Ahmed Ezzat Sabet**, Associate Professor of Fixed Prosthodontics, Faculty of Dentistry, Ain-Shams University, for his endless encouragement, patience and support during the work.

Also, A very special gratitude goes to all the staff members of Fixed Prosthodontics, Faculty of Dentistry, Ain-Shams University.

Dedication

This work is dedicated to

My Beloved Parents

A special feeling of gratitude to my beloved parents, who have been my source of inspiration and gave me strength when I thought of giving up, who continually provide their moral, spiritual, emotional, and financial support.

My lovely wife and my beautiful son

who have supported me throughout my entire work and will always appreciate their unending inspiration.

My Friends and Colleagues

who provided me with extensive personal and professional support to finish this study.

LIST OF CONTENTS

	Page
LIST OF TABLES	II
LIST OF FIGURES	III
INTRODUCTION	1
REVIEW OF LITERATURE	3
STATEMENT OF THE PROBLEM	34
AIM OF THE STUDY	35
MATERIALS & METHODS	36
RESULTS	64
DISCUSSION	74
SUMMARY	82
CONCLUSIONS	84
REFERENCES	85
ARABIC SUMMARY	-

LIST OF TABLES

Table No.	Title	Page
1	Factorial Design of Samples	42
2	Firing Program for E-max	52
3	Firing Program for Gc	53
4	Color change test results (Mean±SDs) as function of ceramic material and thickness	66
5	Translucency parameter test results (Mean±SDs) as function of ceramic material and thickness	68
6	Comparison of shear bond strength test results (Mean±SD) between both material groups	70
7	Frequent distribution of failure modes scores (%) for both groups	71

LIST OF FIGURES

Figure no.	Title	Page
1	CIELAB Color Space	25
2	IPS e.max Press Ingot	37
3	GC Initial LiSi Press Ingot	37
4	Wax-On Wax Blank	38
5	Porcelain Etchant	38
6	Porcelain primer	39
7	Light Cure Self Adhesive Resin Cement	39
8	Phosphoric acid etchant	40
9	Prime and Bond	40
10	0.4mm Disc Shaped Model on 3D Builder Software	43
11	0.8mm Disc Shaped Model on 3D Builder Software	44
12	1.2mm Disc Shaped Model on 3D Builder Software	44
13	VHF CAM 5-S1 IMPRESSION Milling Machine	45
14	Wax Blank Mounted in the Milling Machine Chamber	46
15	Nesting of the Imported STL 3D Discs on the Virtual Wax Blank	46
16	Discs immediately after completion of milling	47
17	Finished Milled Wax Discs Representing Different Thicknesses	47
18	Verifying Disc Thickness Using Digital Caliper	48

Figure no.	Title	Page
19	Wax Discs Sprued & Secured to the Investment Ring Plastic Base	48
20	Pouring of Investment Material	49
21	Burn-out Furnace	50
22	Investment Ring Inside Burn-out Furnace	50
23	Ingot Placed in the Hot Investment Ring	51
24	Programat E3010 Press Furnace	52
25	Marking the Length of the Alox Plunger	53
26	Divesting Using Separating Disc	54
27	Removal of Investment around Discs using Glass Beads	54
28	Discs Sprue Separation	55
29	Custom made split metallic copper mold	56
30	Bond application	57
31	Light cure of the bond	57
32	Ceramic disc etching by hydrofluoric acid	58
33	Silane application to ceramic discs	58
34	Static loading device used for cementation	59
35	Reflective Spectrophotometer with standard black and white blocks for Color and TP measurement	60
36	Universal testing machine	62
37	Shear bond strength test specimen mounted onto testing machine	62