

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Department of Entomology

Evaluation of the antimicrobial activity of purified Spodoptera littoralis Phenol Oxidase in vitro

A Thesis submitted for the degree of Doctor of Philosophy in Science in Entomology

Ву

Hanan Sayed Mohammed Amer

To

Entomology Department

Faculty of Science - Ain Shams University

Supervised by

Prof. Dr. Nadia Mohammed Lotfy

Professor of Entomology, Faculty of Science Ain Shams University

Dr.Shaimaa Ahmed Ahmed Mo'men

Associate professor of Entomology, Facualty of Science

Ain Shams University

Dr. Doaa El-Sayed Abd El- Karim

Associate professor of Entomology
Faculty of Science
Ain Shams University

Dr. Wael Saad El-Sayed Abdel-Mageed

Associate professor of Genetic and Molecular Biology, Faculty of Agriculture, Beni-Suef University.

2022

Acknowledgements

First of all I thank Allah who helps me to go through my road and complete it; Although I am grateful and want to express my deep appreciation to:

My Professor, **Prof. Dr. Nadia Mohamed Lotfy**, Professor of Entomology, Ain Shams University, Who always guide me and support me in my scientific studies.

Associate prof. Dr. Doaa El Sayed Abd-El Karim , Entomology department, Ain Shams University, for her patience with me and her guidance through my work.

Associate prof. Dr. Shaimaa Ahmed Mo'men, Entomology department, Ain Shams University, for her appreciated and wealthy advices and guidance.

Associate prof. Dr. Wael Abdel-Mageed, Genetic department, Beni-suif University, for his understanding and providing me with updated methodology.

Finally, I want to thank my family, my father, mother and deep appreciation to my beautiful supported sons Yassin and Malek and my husband Dr.Mohammad Ragheb for their appreciated help and support

BIOGRAPHY

Name: Hanan Sayed Mohammed Amer

Date of birth: 1-5-1983

Degree awarded: B.Sc. Entomology & Chemistry, 2005, Facualty of Science, Ain Shams University, Egypt.

M.Sc. Entomology, 2015, Facualty of Science, Ain Shams University, Egypt.

Occupation: Infection Control specialist, IPC unit, Ain Shams Specialized Hospital.

Date of registration for Ph.D Degree: January, 2016

CONTENT

	Page
Abbreviation	I
List of tables	III
List of figures	IV
Abstract	VI
I.Introduction	1
II.Literature review	4
1.Insect Immune defense	4
1.1.Cellular immune response	5
1.1.1.Phagocytosis	6
1.1.2.Nodulation	7
1.1.3.Melanization	8
1.1.4.Encapsulation	8
1.1.5.Wound healing	9
1.2.Humoral insect response	9
1.2.1.Insect Antimicrobial Peptides	9
1.2.2.Recognition molecule	10
1.2.2.1.Immunolectin	11
1.2.2.2.Integrin	11
1.2.2.3.Hemolin	1١
7. The role of PO activating system in invertebrate	12
3.Phenoloxidase a key component of the insect immune	1۲
System	
3.1. ProPO and PO structure	13
3.2.Distribution of ProPO	14
3.3.PPO Detection	14
3.4.Gene expression of ProPO system	16
4.AMPs and PO as antibiotic alternative	17
III.Material and Methods	20
1. Maintenance of Spodoptera littoralis	20
2.Immune system activation	21
2.1.Prepartion larvae for injection	22
2.2.Collection of the hemolymph	22
3.Molecular study	23
3.1.Extraction and Purification of Phenoloxidase gene	23
3.1.1.Extraction of total RNA	23
3.1.2.Measuring RNA concentration and	24
electrophoresis	24

	Page
3.1.3.Synthesis of first strand cDNA	25
3.1.4.Amplification of PO gene	26
3.1.5. Purification of the PO for sequencing	27
3.2.Protein profiling of PO in <i>Sp. littoralis</i> larvae of cotton leaf warm	27
3.2.1.PO purification	27
3.2.2.Molecular weight estimation	28
3.2.2.1. Solution	28
3.2.2.Preparation and casting of the gel	30
4. Pathogenic bacterial susceptibility against the PO	32
4.1.Preparing the bacterial suspension	32
4.2.PO concentration and serial dilution	32
IV.RESULT	33
1. Molecular characterization of PO in <i>Sp. littoralis</i>	33
1.1.cDNA synthesis of PO gene	33
1.2.Amplification of PO gene	34
1.3.PO sequence analysis	35
1.4.Searching sequence homologies in protein databses	97
2.Protein electrophoretic analysis of the hemolymph	98
collected from Sp. littoralis larvae	70
2.1.Protein purification	98
2.2.Molecular weight estimation	98
3.Bacterial susceptibility against the PO	100
V.DISCUSSION	104
I.Molecular characterization studies	104
I.1.ProPO activating system in Sp. litorallis	104
I.2.PO sequencing and Phylogenetic analysis	105
I.3. Protein electrophoretic analysis and bacterial	106
susceptibility studies	
II.Bacterial susceptibility	107
III.Conclusion	110
IV. Recommendation	110
VII.SUMMARY	111
VIII.REFERENCES	115
ARABIC SUMMARY	145

LIST OF ABBREVIATIONS

AGERI	Agricultural Genetic Engineering Research
	Institute
AMP	Antimicrobial peptide
B. cereus	Bacillus cereus
bp	Base pair
Bt	Bacillus thuringiensis
C	Celsius
CAPL	Central Agriculture Pesticides Research
cDNA	Complementary Deoxyribonucleic acid
Cm	Centimeter
CuA	copper molecule A
CuB	copper molecule B
Dist.	Distilled
DSCAM	Down syndrome cell-adhesion molecule
DTT	Dithiothreitol
E.coli	Escherichia coli
ESBL	Extended-spectrum beta-lactamase
Fig.	Figure
G-ve	Gram negative
G+ve	Gram positive
Hr	Hour
KDa	Kilodalton
L	Liter
LPS	Lipopolysaccharide
MDR	Multi drug resistant
MRSA	Methicillin resistant Staph aureus
Min	Minute
mg	Miligram
ml	Mililiter
ng	nanogram

P. aeruginosa	Pseudomonas aeruginosa
PAMP	Pathogen-associated molecular pattern
PCR	Polymerase chain reaction
PGN	Peptidoglycan
PGRP	Peptidoglycan recognition protein
PO	Phenol oxidase
PPAE	prophenoloxidase-activating enzyme
PPO	Prophenol oxidase
PRP	Pattern recognition protein
PRR	Pattern recognition receptors
RNA	Ribonucleic acid
RPM	Revolution per minute
S. aureus	Staphylococcus aureus
Sp. litorallis	Spodoptera litorallis
SDS	Sodium dodecyl sulphate
SDS-PAGE	Sodium Dodecyl Sulfate Polyacrylamide Gel
	Electrophoresis
Tab	Table
TBE	Tris+Boric acid+ EDTA
μl	Microliter
UV	Ultraviolet
VRE	vancomycin-resistant Enterococci

LIST OF TABLES

Table No.	Table	Page
Table 1	RNA concentration by ng/µl and the ratio	33
	of A260/A280 for each sample determined	
	by nanodrop	
Table 2	Inhibition zone assay (generated in vitro	103
	by PO purified from the haemolymph of <i>S</i> .	
	litorallis) respective to bacterial types	

LIST OF FIGURES

Figure	Figure	Page
No. Fig 1	Agarose gel electrophoresis (2%) stained with ethidium bromide showed total RNA extracted from 5 th larval instar of cotton leaf warm <i>Sp. littoralis</i> (C;control, 1,2,3;replicants)	34
Fig 2	PO cDNA amplification of Sp. littoralis using specific primers. A PCR product of ~600 bp was obtained (M: 100 bp marker, C:control, 1,2:replicant of treated hemolymph samples)	35
Fig 3	Multiple alignment of at the nucleotide level of PO sequence contig in <i>Sp.littoralis</i> by CLUSTAL W	37
Fig 4	Phylogenetic analysis of PO gene transcripts from various species of Lepidopterous insects. The analysis involved 10 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 39 positions in the final dataset.	97
Fig 5	Regions of local similarity between PO sequence from of <i>S. littoralis</i> , and compared the PO sequence to sequence databases at protein level.	98
Fig 6	SDS-PAGE of hemolymph of cotton leaf worm larvae in two groups. Lanes T; hemolymph of moth larvae induced with Bt, lane C: hemolymph of intact moth larvae. M: Proteins marker (with wide	99

Figure No.	Figure	Page
	range molecular weight, ranged from 10 to 200 KDa. PO polypeptides of around 65 KDa	
Fig 7	inhibition zone with gram positive bacteria (Enterococci and Staph aureus)	101
Fig 8	Inhibition zone with gram negative bacteria (E. coli) and no inhibition zone with (Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumonia).	102

Abstract

Hanan Sayed Amer. Evaluation of the antimicrobial activity of purified Spodoptera littoralis Phenol Oxidase in vitro. Faculty of Science, Ain Shams University, 2022.

Insect innate immune system comprises humoral and cellular defense mechanisms organized differently depending on the insect species and the type of microbial invasion. Humoral defenses against pathogens depend on pathogen receptors that activate the immune response, including the production of defense peptides as antimicrobial peptides (AMPs) and enzymes such as prophenoloxidases (PPOs) and lysozymes.

Phenoloxidase (PO) is the primary enzyme involved in melanin biosynthesis thus, plays an important role in insect immunity. In the present study, larval hemolymph of *spodoptera littoralis* had been immunized by serial dilutions of *Bacillus thuringiensis* (Bt). We recorded 2X10⁶⁰ as a sub lethal concentration of the bacterial cells (LC₂₀), that induce immune induction of the larval hemolymph to enable us to complete the subsequent experiments. Significant developments have been made in the purification methodology. In the present study we select fast and rapid purification technique using 1ml HiTrap CM FF as a prepacked with CM Sepharose Fast Flow, a weak cation exchanger for small-scale protein purifications. We perceived the presence of PO enzyme at 65 kDa compared with its native enzyme PPO at 70KDa using SDS gel electrophoresis technique. The antimicrobial activity of the purified enzyme was tested against different types of pathogenic bacteria;

Staphylococcus aureus and Enterococcus as grams- positive strains and E. coli, Pseudomonas Enterococci, Acinetobacter baumannii, and Klebsiella pneumonia as gram- negative strains. Data revealed that the potential of PO as antimicrobial peptide against Gram-positive strains is higher than that of Gram-negative strains. The cDNA of PO was detected in S. littoralis larvae 24 hours post induction. Sequence analysis of detected PO showed high similarity to homologous sequences in other lepidopterous species, particularly S. litura. These results established that prophenoloxidase activation is an integral component of the insect defense which immobilizes and kills invading microorganisms.

Thus, the study needs more investigations to confirm the activity of PO against human and animal tissues to prove its antimicrobial application as antibiotics alternative.

Keyword: Insect immune response, Phenol-oxidase, Spodoptera littoralis, antimicrobial peptides.

I. Introduction

The abuse of antibiotics in medicine, agriculture and animal husbandry, especially in developing countries, antimicrobial resistance has become a serious problem. The Kenyan study detected a large number of antibiotic residues in edible meat (Ayukekbong et al., 2017). The prevalence of vancomycin-resistant Enterococci (VRE) and methicillin-resistant Staphylococcus aureus (MRSA) in clinical medicine is increasing, so counter measures are urgently needed to solve these bacterial infections. But from the perspective of pharmaceutical companies, the development of new antibiotics has resulted in lower profitability. Therefore, the substitution of antibiotics has become a consideration in the pharmaceutical, farming, animal rearing and food industries (Huan et. al. 2020).

Insects have been remarkably successful in evolution. Current estimates are that they account for 90% of all known species within the animal kingdom. With exception of the oceans, insects colonize all ecological niches on earth. Consequently, they are confronted by an extremely large variety of potentially harmful microorganisms. The evolutionary success of the insects can be attributed to various reasons, among which is the presence of a highly efficient immune system. In contrast to vertebrates, insects lack true antibodies and, hence, also an adaptive immune response. They rely solely on a well-developed innate immune system to defend themselves against microbial infections (**Franssens**, 2006).

Insects depend on innate immune responses to defend themselves against foreign microorganisms. Its cellular defense mechanism is mediated by blood cells, which are the immune cells of insects. Blood cells play a key role in phagocytosis, nodulation, and encapsulation of invading pathogens. Humoral immunity involves antimicrobial peptides and the phenoloxidase

(PO) system (Lemaitre and Hoffmann 2007). The PO system is responsible for melanization, which is a process in which the insoluble brown-black pigment, melanin, is synthesized and deposited.

Antimicrobial peptides represent research and clinical care in the modern antimicrobial field. Many AMPs show incredible safe effects an antimicrobial resistant microorganisms and have a low probability of developing resistance (Kendurkar and Sengupta, 2018). The action of activated antimicrobial peptide (AMP) on larval hemolymph showed a significant antimicrobial action against various Gram-negative (G-ve) and Gram-positive (G + ve) bacteria (Lei et al 2019). The gene-encoded AMPs are activated immediately after infection and act against a broad spectrum of microbes. These peptides kill bacteria (including strains resistant to conventional antibiotics), fungi, enveloped viruses, and even tumors. These properties make them excellent candidates for therapeutic agents (Bals, **2000**). It is obvious that the PPO of different insect's species can be used for defense against attacking pathogens due to its rapid action (Hillyer et al., 2003, 2004; Cerenius et al., 2008). After using several purified protein, Zhao et al 2007 proved for the first time that the reactive compound produced by PO binds, aggregates and kills various bacteria and fungi. Proteolytic activation of proPO has been recorderd in various insect species. The activation process mediates the production of intermediates that form the integral part of the insect immune system against microbial invasion (Gillespie et al., 1997; Ashida and Brey, 1997; Cerenius and So"derha"ll, 2004).

Spodoptera littoralis is a genus of most important crop pests found throughout the Americas, Southeast Asia and countries around the Mediterranean (Ellis, 2004; Meagher et al., 2008). S. littoralis, the Egyptian cotton leafworm, is found in Africa, southern Europe, and the