

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سامية زكى يوسف

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

MONITORING AND MANAGEMENT OF PLASTIC MARINE LITTER IN EGYPTIAN NORTHERN COASTAL AREAS USING NEW TECHNIQUES

Submitted By

Noha Samy Sayed Mahmoud

B.Sc. In Civil Engineering, Faculty of Engineering, Ain Shams University, 2003
Diploma in Environmental Sciences, Faculty of Graduate Studies and
Environmental Research, Ain Shams University, 2014
Master in Environmental Sciences, Faculty of Graduate Studies and
Environmental Research, Ain Shams University, 2018

A Thesis Submitted in Partial Fulfillment

Of
The Requirement for the Doctor of Philosophy Degree
In
Environmental Sciences

Department of Environmental Engineering Sciences Faculty of Graduate Studies and Environmental Research Ain Shams University

APPROVAL SHEET MONITORING AND MANAGEMENT OF PLASTIC MARINE LITTER IN EGYPTIAN NORTHERN COASTAL AREAS USING NEW TECHNIQUES

Submitted By Noha Samy Sayed Mahmoud

A Thesis Submitted in Partial Fulfillment

 $\bigcap f$

The Requirement for the Doctor of Philosophy Degree

In

Environmental Sciences
Department of Environmental Engineering Sciences

This thesis was discussed and approved by:

Name Signature

1-Prof. Dr. Iman Mahmoud Al-Azizy

Prof. of Water Researches Vice President of 6th October University

2-Dr. Sameh Reyad Abdalla

Head of Central Department of Egyptian Environmental Affairs Agency West Delta Region

3-Prof. Dr. Aly Nabih El Bahrawy

Prof. of Hydraulics Faculty of Engineering Ain Shams University

4-Dr. Noha Samir Donia

Prof of Environmental Hydraulics, Department of Environmental Engineering Sciences Dean Faculty of Graduate Studies and Environmental Research Ain Shams University

MONITORING AND MANAGEMENT OF PLASTIC MARINE LITTER IN EGYPTIAN NORTHERN COASTAL AREAS USING NEW TECHNIQUES

Submitted By

Noha Samy Sayed Mahmoud

B.Sc. In Civil Engineering, Faculty of Engineering, Ain Shams University, 2003
Diploma in Environmental Sciences, Faculty of Graduate Studies and
Environmental Research, Ain Shams University, 2014
Master in Environmental Sciences, Faculty of Graduate Studies and
Environmental Research, Ain Shams University, 2018

A Thesis Submitted in Partial Fulfillment Of

The Requirement for the Doctor of Philosophy Degree In

Environmental Sciences
Department of Environmental Engineering Sciences
Under The Supervision of:

1-Prof. Dr. Aly Nabih El Bahrawy

Prof. of Irrigation and Hydraulics Faculty of Engineering Ain Shams University

2-Dr. Noha Samir Donia

Prof of Environmental Hydraulics, Department of Environmental Engineering Sciences
Vice Dean Faculty of Graduate Studies and Environmental
Research for Environment & Community
Ain Shams University

3-Dr. Hanan Ali Farag

Associate Research, National Water Research Center Ministry of Water Researches and Irrigation

ACKNOWLEDGMENT

First of all, I would like to thank almighty Allah for his endless Grace and Blessing on me to fulfill this study.

I am greatly indebted to **Prof. Dr. Aly El-Bahrawy** – **Professor of Hydraulics** – **Faculty of Engineering** – **Ain Shams University** for his kind supervision, patience, help, valuable support, time, tolerance, and the facilities provided throughout the different stages of his work.

I am deeply grateful to **Prof. Dr. Noha Donia - Dean of the Faculty of Graduate Studies and Environmental Research**. She has been a tremendous mentor for me. I would like to thank her not only for his fruitful support but also for his continuous encouragement.

This work could not have been completed without the keen interest and the valuable support provided by **Dr. Hanan Farag - Associate Professor - National Water Research Center (NWRC).**

Special thanks to **Dr. Mohamed Omar** – **Edgepro company** for his technical support on this study and for providing archived and common image processing software (ERDAS Imagine).

I wish to express my deepest appreciation to **Prof. Dr. Eman El-Azizy** – **Vice president of the 6th of October University**, for her generous and continuous professional assistance and continues support.

I would like to thank **Dr. Sameh Reyad – Head of The Central Department of EEAA - Alexandria Regional Branch** not only for facilitating the fieldwork procedures but also for his kind support and continuous motivation during this work.

Special thanks to my boss **Dr. Ayman Hamada – Head of The Central Department of Biodiversity – EEAA** for his daily encouragement and unconditional support.

I would offer my special thanks to my friends **Yasmin Abd Elrazik** and **Rania Salah** for their moral support and for enduring this long process with me.

Finally, there are no words that could express my sincere gratitude to my beloved family that believed in me and gave me all the support. I would like to dedicate this work to my family and especially my lovely daughter **Nour**.

ABSTRACT

Marine litter (ML) has recently become one of the most global prevalent pollution problems adversely affecting waterways. Litter makes its way into the water bodies as a result of disasters, accidents, mishandling, or oversight events. Minimizing the negative impacts of ML on marine ecosystems, biodiversity, human health, and the economy become a worldwide crucial need. However, an integrated system for monitoring and assessment of ML abundance in marine and coastal environments is still required to enhance existing policies and management practices.

This study aimed to examine an integrated science-based methodology for monitoring and assessment of macro-litter on the shoreline, and at the sea surface of El-Shatby beach, Alexandria Governorate as a pilot Egyptian Northern site. Quantitative measurements of ML were implemented using UNEP/MAP metadata through four years of beach-fieldwork surveys. ML quantities, materials, and main sources were identified to support the simulation of their possible fate and trajectory. Another monitoring technique was Optical spectral of Sentinel-2 (S2), and Planetscope (PS) images that were examined using a combination of different spectral bands with several indices, and verified by the pixel-value classification method of S2 images. Moreover, microwave remote sensing (SAR) was examined to add more information to the optical study. Exploring the vulnerability of coastal resources to ML using General National Oceanic and Atmospheric Administration Operational Oil Modeling Environment (GNOME) software was the additional target of this study. For simulating ML's possible trajectory hypothetical release of ML from El-Shatby beach was simulated using the GNOME model through three windage classes during wet and dry periods.

This study concluded that 72% of beach accumulated material was artificial polymers, and that variation in climatic conditions significantly influences trajectory and distribution patterns of ML under the forces of strong wind and rainfall. The most exposed sites to ML pollution were nearby public and private beaches, historical sites, Eastern and Western harbors, and Abu-Qir bay. Classification image was the most precise technique that reflects the real variety of different features, and the overall accuracy of plastics detection and identification using remote sensing techniques reached about 70-80%.

TABLE OF CONTENT

ACKNOWLEDGMENT	•••••
ABSTRACT	I
TABLE OF CONTENT	II
LIST OF FIGURES	VII
LIST OF TABLES	VII
LIST OF ABBREVIATIONS	IX
1. CHAPTER ONE	1
INTRODUCTION	1
1.1 Background	1
1.2 Problem Statement	1
1.2.1 Marine Biodiversity Threats	2
1.2.2 Damages Marine Ecosystem	2
1.2.3 Risks Human Health and Safety	2
1.2.4 Losses in Economy	3
1.3 Study Objectives	3
1.4 Work Plan	3
1.5 Study Approach	4
1.6 Thesis Structure	5
2. CHAPTER TWO	6
LITERATURE REVIEW	6
2.1 Definition of ML	6
2.2 Sources of ML	6
2.3 ML Materials	8
2.4 ML Fate	9
2.4.1 Fragmentation	10
2.4.2 Photooxidation	10
2.4.3 Biodegradation	10
2.5 Size and Shape of ML	
2.6 Distribution of ML	
2.6.1 Beaches	12
2.6.2 Floating ML	
_	

	2.6.3 Seafloor	12
	2.7 Impacts of ML	13
	2.7.1 Entanglement/Entrapment	13
	2.7.2 Ingestion	13
	2.7.3 Habitat Destruction	13
	2.7.4 Chemicals Transport to the Food Chain	14
	2.7.5 Introduction of Invasive Species	14
	2.7.6 Socio-Economic Impacts	14
	2.8 ML Threats in the Mediterranean Sea	16
	2.9 Remote Sensing (RS) Modeling	17
	2.10 Trajectory Modeling	19
	2.11 Concluding Remarks	
3	. CHAPTER THREE	22
	STUDY AREA DESCRIPTION	22
	3.1 Geographical Location	22
	3.2 Administrative Division	23
	3.3 Marine Habitats and Biodiversity	25
	3.4 Main Economic Activities	26
	3.4.1 Tourism and Recreation	26
	3.4.2 Industrial Activities	27
	3.4.3 Maritime Transport	27
	3.4.4 Fishing and Aquaculture	28
	3.4.5 Agriculture	29
	3.4.6 Oil Refineries	29
	3.5 Solid Waste in Alexandria Governorate	30
	3.6 Laws and International Commitments	33
	3.6.1 Main Regulating Laws	33
	3.6.2 Main Regulating Conventions/ Strategies	34
	3.7 Relevant Stakeholders	35
	3.7.1 Primary Stakeholders (Category I)	36
	3.7.2 Key Stakeholders (Category II)	36
	3.7.3 Secondary Stakeholders (Category III)	36

3.7.4 Other Stakeholders	36
I. CHAPTER FOUR	37
4.1 Beach-Field Surveys	37
4.1.1 Type of Collected Data	37
4.1.2 Site Selection	38
4.1.3 Sampling Unit	38
4.1.4 Frequency and Timing of Surveys	39
4.1.5 Litter Size	39
4.1.6 Data Analysis	39
4.1.7 Specific Gravity of Polymers	.42
4.2 Remote Sensing Technique	.43
4.2.1 Remote Sensing Procedures	.44
4.2.2 Sentinel-2 Satellite	.45
4.2.4 Planetscope Dove Satellite	46
4.2.5 SAR Sensor	50
4.3 Trajectory Modeling	50
4.3.1 Setting GNOME Model	50
4.3.2 Location File Extraction	52
4.3.3 Litter Released Information	52
4.3.4 Minimum Regret	53
4.3.5 Movers Extraction	53
4.4 SWOT Analysis	54
4.5 DPSIR Framework	55
5 CHAPTER FIVE	56
5.1 Field Work Analysis	.56
5.1.1 First-Year Field Survey	.56
5.1.2 Second Year Field Survey	57
5.1.3 Third Year Field Survey	59
5.1.4 Fourth Year Field Survey	.60
5.1.5 Fieldwork Results	.62
5.1.6 Top Five Items	.63
5.1.7 Smoking / Non-smoking items	.64

5.1.8 Plastic Items Compared to Others	64
5.1.9 Fieldwork Discussion	65
5.2 Remote Sensing	66
5.2.1 Sentinel-2 Satellite	66
5.2.2 Planetscope Dove Satellite	68
5.2.3 Spectral Indices of Optical Images	69
5.2.4 SAR Sensor	72
5.2.5 Tidal Effects	76
5.2.6 Remote Sensing Discussions	77
5.3 GNOME Modeling Results	78
5.3.1 Model Inputs	78
5.3.2 Alexandria Map Extraction	80
5.3.3 Movers Extraction	80
5.3.4 Statistical Weather Data	81
5.3.5 GNOME Discussion	87
5.4SWOT Analysis	88
5.5 DPSIR Analysis	89
CHAPTER SIX	92
6.1 Main Conclusion	92
6.1.1 Beach-Fieldwork	92
6.1.2 Remote Sensing	93
6.1.3 GNOME Model	93
6.2 Main Recommendations	94
SUMMARY	96
REFERENCES	98
مستخلص)
الملخص العربي	

LIST OF FIGURES

Figure 1-1 Followed steps for obtaining the study objectives	4
Figure 2-1 Impact of ML on economic activities	15
Figure 2-2 Types of ML recorded in the Mediterranean Sea	16
Figure 3-1 Location of Mediterranean Sea	22
Figure 3-2 Satellite image for Alexandria Governorate	23
Figure 3-3 Administrative division of Alexandria Governorate	24
Figure 3-4 El-Shatby beach study area	25
Figure 3-5 Main harbors along with Alexandria Governorate	28
Figure 3-6 Sources of solid waste in Egypt (million tons)	30
Figure 3-7 Materials of solid waste in Egypt	
Figure 3-8 Classification of solid waste materials in Alexandria	32
Figure 3-9 Final disposals of solid waste in Egypt	32
Figure 4-1 Satellite image of El-Shatby site	38
Figure 4-2 Sampling unit for monitoring litter on beaches	39
Figure 4-3 Sample of UNEP/MAP metadata template	41
Figure 4-4 Pictures of beach-field works	42
Figure 4-5 Specific gravity of artificial polymers	43
Figure 4-6 Analytic charting between ground objects	44
Figure 4-7 Applied procedures for RS monitoring	45
Figure 4-8 Verification image using Planetscope satellite	47
Figure 4-9 Diagnostic Mode selected in GNOME software	52
Figure 4-10 Location of Mediterranean region	52
Figure 4-11 Litter information window	53
Figure 4-12 Winds variable added in GNOME model	54
Figure 4-13 SWOT Analysis Framework	54
Figure 4-14 DPSIR framework chain	55
Figure 5-1 Main sources in first-year field surveys	56
Figure 5-2 Main materials in first-year field surveys	57
Figure 5-3 Main sources in second-year field surveys	58
Figure 5-4 Main materials in second field surveys	59
Figure 5-5 Main sources in third-year field survey	59
Figure 5-6 Main materials in third field surveys	60
Figure 5-7 Main sources in fourth-year field surveys	61
Figure 5-8 Main materials in fourth field surveys	62
Figure 5-9 Identification of beach debris a) materials, b) sources	62
Figure 5-10 Top five ML items	63
Figure 5-11 Smoking items compared with non-smoking items	64

Figure 5-12 Artificial polymers compared with other materials 64
Figure 5-13 Accumulation of ML at the study area
Figure 5-14 Spectral response of Sentinel-2 and PlanetScope 66
Figure 5-15 Sentinel-2 image of El-Shatby site 67
Figure 5-16 Visible bands (True Color) detected by Sentinel-2 satellite 67
Figure 5-17 Spectral zones (bands) to clarify types of ground features. 68
Figure 5-18 Verification image using Planetscope satellite
Figure 5-19 Examined indices of WRI, PI, AWEI
Figure 5-20 Examined indices of NDMI, NDVI, NDWI, SR, MNDVI 71
Figure 5-21 Sentinel-1 image (SAR Satellite) for the AOI
Figure 5-22 Sand and sea masks for the AOI
Figure 5-23 Backscattering information in dB values
Figure 5-24 Sentinel-1 VH channel, coastal sand classification 75
Figure 5-25 Comparison between photographic and SAR
Figure 5-26 Points (A, B) for tidal effect analysis
Figure 5-27 Series of temporal images
Figure 5-28 Modeling debris trajectory by three movers
Figure 5-29 Mediterranean Sea location map extracted from $GOODS$. 80
Figure 5-30 Current data using HYCOM extracted from GOODS 81
Figure 5-31 Average wind direction of Alexandria Governorate 82
Figure 5-32 Average rainfall (mm) in Alexandria Governorate 82
Figure 5-33 Scenarios of litter trajectory through different windage 84
Figure 5-34 Tracking of litter movements in wet periods
Figure 5-35 Tracking of debris movements in dry periods
Figure 5-36 Backward release of ML in dry periods, high windage 87
Figure 5-37 DPSIR framework chain

LIST OF TABLES

Table 2-1 Common categories of plastic wastes	9
Table 2-2 Size categories of plastic ML	11
Table 2-3 Morphological descriptors for marine plastic particles	11
Table 3-1 Approximate population of Alexandria Governorate	23
Table 3-2 Census population (2015) and its distribution in Alexandria	24
Table 3-3 Cultivated land in Alexandria Governorate	29
Table 3-4 Solid waste produced in Alexandria Governorate	31
Table 3-5 Number of laws regulating activities and waste disposals	33
Table 3-6 Number of regional and international conventions	34
Table 3-7 Stakeholders categorization (IUCN, 2014)	35
Table 4-1 Selected study areas along Alexandria coast	38
Table 4-2 Color coding for relevant activities	40
Table 4-3 Band metadata information of the S2 satellite	46
Table 4-4 Spectral indices using Sentinel-2 and Planetscope satellite	48
Table 5-1 Main sources of the first year of surveys	56
Table 5-2 ML materials in the first-year of surveys	.57
Table 5-3 Main sources of the second year of surveys	58
Table 5-4 ML materials in the second year of surveys	58
Table 5-5 Main sources of the third year of surveys	59
Table 5-6 ML materials in the third year of surveys	60
Table 5-7 Main sources of the fourth year of surveys	61
Table 5-8 ML materials in the fourth year of surveys	61
Table 5-9 Top five items according to surveys	63
Table 5-10 Wavelength range of S2 and PS satellites spectral bands	66
Table 5-11 dB values of different objects	73
Table 5-12 Baseline parameter for GNOME simulation	79

LIST OF ABBREVIATIONS

Abandoned, lost, or otherwise discarded fishing gear Area of Interest Automated Water Extraction Dichlorodiphenyltrichloroethane Driver/ Pressure/ State of Change/ Impact/ Response Egyptian Environmental Affairs Agency Environmental Impact Assessments European Space Agency	ALDFG AOI AWEI DDT DPSIR EEAA EIA
Extended Producer Responsibilities Geographic Information Systems	EPR GIS
General Authority for Fish Resources Development	GAFRD
General Authority of Remote Sensing	GARS
Global Programme of Action	GPA
Good Environmental Status	GES
Integrated coastal zone management	ICZM
Integrated monitoring and assessment programs	IMAP
Mediterranean Action Plan	MAP
Ministry of Agriculture and Land Reclamation	MALR
Ministry of Housing and New Communities	MHNC
Ministry of Water Resources and Irrigation	MWRI
Multispectral Instrument	MSI
Municipal Solid Waste	MSW
National Institute of Oceanography and Fisheries	NIOF
National Authority for Remote Sensing and Space Sciences	NARSS
NASA research Jet Propulsion Lab	JPL
Near Intra-Red	NIR
Normalize Difference Moisture	NDMI
Normalize Difference Water Index	NDWI
Normalize Difference Vegetation Index	NDVI
Non-Governmental Organizations	NGOs
Modified Normalized Difference Vegetation	MNDVI
Multispectral Instrument	MSI

LIST OF ABBREVIATIONS

Plastic Index	PI
Polychlorinated biphenyls	PCBs
Remote Sensing	RS
Reversed Normalized Difference Vegetation	RNDVI
Sea Level Rise	SLR
Shore Protection Authority	SPA
Strength – Weakness – Opportunities – Threats	SWOT
Simplified Ratio	SR
Ultraviolet	UV
United Nations Convention on Biological Diversity	UNCBD
United Nations Environmental Program	UNEP
Unmanned aerial vehicle	UAV
US Geology Survey Authority	USGS
Water Ratio	WRI