

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سامية زكى يوسف

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

Faculty of Education
Department of Mathematics

Spectral Solutions of Differential Equations via Some New Classes of Orthogonal Polynomials and Special Functions

Presented by

Ahmed Gamal Atta Mohamed

A Thesis Submitted

to

Faculty of Education

In partial Fulfillment of the Requirements for the Degree of Ph.D. in Teacher's Preparation of Science (Pure Mathematics)

Department of Mathematics

Faculty of Education - Ain Shams University

Supervised by

Prof. Dr. Galal Mahrous Moatimid

Professor of Applied Mathematics Department of Mathematics Faculty of Education Ain Shams University

Dr. Youssri Hassan Youssri

Associate Professor of Pure Mathematics
Department of Mathematics
Faculty of Science
Cairo University

APPROVAL SHEET

Faculty of Education Department of Mathematics

Candidate: Ahmed Gamal Atta Mohamed

<u>Thesis Title</u>: Spectral Solutions of Differential Equations via Some New Classes of Orthogonal Polynomials and Special Functions

<u>Degree</u>: Ph.D. in Teacher's Preparation of Science in Pure Mathematics
(Numerical Analysis)

Supervisors:

No.	Name	Profession	Signature
1.	Prof. Dr. Galal Mahrous Moatimid	Professor of Applied Mathematics Department of Mathematics Faculty of Education Ain Shams University	
2.	Dr. Youssri Hassan Youssri	Associate Professor of Pure Mathematics Department of Mathematics Faculty of Science Cairo University	

Addresses

Supervisor

1. Prof. Dr. Galal Mahrous Moatimid

Department of Mathematics

Faculty of Education

Ain-Shams University

E-mail: Gal_moa@edu.asu.edu.eg

2. Dr. Youssri Hassan Youssri

Department of Mathematics

Faculty of Science

Cairo University

E-mail: youssri@cu.edu.eg

Author

Ahmed Gamal Atta Mohamed

Department of Mathematics

Faculty of Education

Ain-Shams University

Email: ahmed_gamal@edu.asu.edu.eg

Abstract

In this thesis, we propose new efficient spectral techniques for handling certain types of partial differential equations and partial fractional differential equations such as; the one-dimensional linear hyperbolic partial differential equation of the first-order, the fractional diffusion wave equation, the heat conduction equation, the fractional initial-value problem, the time-fractional partial differential problem, the telegraph equation, and the nonlinear fractional Rayleigh-Stokes equation. In these techniques, we employ new basis functions of the shifted Chebyshev polynomials of the fifth and sixth kinds. The key idea of the presented techniques depends on transforming these equations with their underlying conditions into systems of algebraic equations in the unknown expansion coefficients. Our studies are supported by a careful convergence analysis of the suggested shifted fifth and sixth kinds Chebyshev expansions. Finally, some numerical examples are presented to confirm the accuracy and efficiency of the proposed techniques. We want to mention that this thesis consists of seven chapters and all the results of chapter two up to chapter seven are completely new. Some results obtained in this thesis are already published in four international prestigious journals with high impact factors and some others are submitted for publication and still under referring.

Contents

Table of Contents	viii
List of Tables	x
List of Figures	xii
List of Abbreviations	xiii
Acknowledgements	xv
Summary	xvii
1 Fundamentals	1
1.1 Orthogonal polynomials	5
1.1.1 A symmetric class of orthogonal polynomials	6
1.1.2 Chebyshev polynomials of the fifth kind	9
1.1.3 Chebyshev polynomials of the sixth kind	11
1.2 Spectral methods	13
1.2.1 Galerkin method	14
1.2.2 Tau method	15
1.2.3 Collocation method	15
1.3 Fractional calculus	15
1.3.1 Some definitions of the fractional calculus	16
1.3.2 Properties of Caputo fractional differential operator	17
1.3.3 Advantages of fractional derivatives	19
1.3.4 Disadvantages of fractional derivatives	20

		1.3.5 Some applications of fractional calculus	20
2	Sh	ifted fifth-kind Galerkin treatment for linear hyperbolic	
	first	t-order partial differential equations	23
	2.1		23
	2.2	Some properties and relations of Chebyshev polynomials of the	
		fifth-kind and their shifted ones	25
	2.3	Shifted fifth-kind Chebyshev-Galerkin method for the one-dimension	nal
		HPDEs of first-order	28
		2.3.1 Choice of the basis functions	28
		2.3.2 Numerical treatment of the one-dimensional HPDEs of	
		first-order	32
	2.4	Convergence and error analysis	35
	2.5	Illustrative examples	41
	2.6	Conclusion	48
3	Shi	fted fifth-kind Chebyshev polynomials Galerkin based pro-	
_			
	ced	ure for treating fractional diffusion-wave equation	51
	3.1	Introduction	51
	3.1	Introduction	51
	3.1	Introduction	51 53
	3.1	Introduction	51 53 56
	3.1	Introduction	51 53 56 57
	3.1	Introduction Some relations of the shifted fifth-kind Chebyshev polynomials Galerkin approach for treatment of the FDWE 3.3.1 Selection of the basis functions 3.3.2 Some formulas concerned with the basis functions	51 53 56 57 58
	3.1	Introduction Some relations of the shifted fifth-kind Chebyshev polynomials Galerkin approach for treatment of the FDWE 3.3.1 Selection of the basis functions 3.3.2 Some formulas concerned with the basis functions 3.3.3 Galerkin solution for FDWE	51 53 56 57 58
	3.1	Introduction	51 53 56 57 58 62
	3.1 3.2 3.3	Introduction Some relations of the shifted fifth-kind Chebyshev polynomials Galerkin approach for treatment of the FDWE 3.3.1 Selection of the basis functions 3.3.2 Some formulas concerned with the basis functions 3.3.3 Galerkin solution for FDWE 3.3.4 Transformation to the homogeneous initial and boundary conditions	51 53 56 57 58 62
	3.1 3.2 3.3	Introduction Some relations of the shifted fifth-kind Chebyshev polynomials Galerkin approach for treatment of the FDWE 3.3.1 Selection of the basis functions 3.3.2 Some formulas concerned with the basis functions 3.3.3 Galerkin solution for FDWE 3.3.4 Transformation to the homogeneous initial and boundary conditions Galerkin approach for the treatment of FDWED	51 53 56 57 58 62 65 67
	3.1 3.2 3.3	Introduction Some relations of the shifted fifth-kind Chebyshev polynomials Galerkin approach for treatment of the FDWE 3.3.1 Selection of the basis functions 3.3.2 Some formulas concerned with the basis functions 3.3.3 Galerkin solution for FDWE 3.3.4 Transformation to the homogeneous initial and boundary conditions Galerkin approach for the treatment of FDWED 3.4.1 Galerkin solution for FDWED	51 53 56 57 58 62 65 67
	3.1 3.2 3.3	Introduction Some relations of the shifted fifth-kind Chebyshev polynomials Galerkin approach for treatment of the FDWE 3.3.1 Selection of the basis functions 3.3.2 Some formulas concerned with the basis functions 3.3.3 Galerkin solution for FDWE 3.3.4 Transformation to the homogeneous initial and boundary conditions Galerkin approach for the treatment of FDWED 3.4.1 Galerkin solution for FDWED 3.4.2 Treatment of the non-homogeneous initial and boundary	51 53 56 57 58 62 65 67 67
	3.1 3.2 3.3 3.4	Introduction Some relations of the shifted fifth-kind Chebyshev polynomials Galerkin approach for treatment of the FDWE 3.3.1 Selection of the basis functions 3.3.2 Some formulas concerned with the basis functions 3.3.3 Galerkin solution for FDWE 3.3.4 Transformation to the homogeneous initial and boundary conditions Galerkin approach for the treatment of FDWED 3.4.1 Galerkin solution for FDWED 3.4.2 Treatment of the non-homogeneous initial and boundary conditions	51 53 56 57 58 62 65 67 67

4 Modal Shifted Fifth-Kind Chebyshev Tau Integral Approx	ach
for Solving Heat Conduction Equation	77
4.1 Introduction	. 77
4.2 Some new formulas of fifth-kind Chebyshev polynomials and	d
their shifted ones	. 79
4.2.1 Derivation of the second-order derivatives formulas of C	j(t) 79
4.2.2 Derivation of integrals formulas of $C_j(x)$. 83
4.3 A numerical tau approach for the treatment of heat conduction	n
equation	. 86
4.3.1 Treatment of the equation subject to homogeneous boun	d-
ary conditions	. 87
4.3.2 Handling heat conduction equation subject to the non	<u>-</u>
homogeneous boundary conditions	. 90
4.4 Convergence and error analysis	. 91
4.4.1 Separable solution case	. 91
4.4.2 Non-separable solution case	. 94
4.5 Illustrative examples	. 96
4.6 Concluding remarks	. 101
5 A Novel Spectral Schemes to Fractional Problems with N	
Smooth Solutions	103
5.1 Introduction	. 103
5.2 Galerkin approach for treatment of FIVP	. 105
5.2.1 Basis functions	. 105
5.2.2 Galerkin solution for FIVP	. 107
5.2.3 Error bounds	. 109
5.3 Galerkin approach for treatment of time-fractional partial diff	: -
ferential problem	. 112
5.3.1 Basis functions	. 112
5.3.2 Galerkin solution for time-fractional partial differential	ıl
problem	. 114
5.3.3 Error bounds	. 117
5.4 Illustrative examples	. 119

	5.5	Concluding remarks	124
6	$\mathbf{A}\mathbf{d}$	Ivanced Shifted Sixth-Kind Chebyshev Tau Approach for	
\vdash		ving Linear One-Dimensional Hyperbolic Telegraph Type	
느		<u> </u>	
_	Pro	blem	125
	6.1		125
	6.2	Some relations of shifted Chebyshev polynomials of the sixth-	
		kind	128
	6.3	The proposed numerical scheme for treating the telegraph-type	
		equation	133
		6.3.1 Treatment of the non-homogeneous boundary conditions	139
	6.4	Investigation of the convergence and error analysis	140
	6.5	Illustrative examples	144
	6.6	Concluding remarks	150
7	Aí	fast Galerkin approach for solving the fractional Rayleigh-	
	Stol	kes problem via sixth-kind Chebyshev polynomials	151
	7.1	Introduction	151
	7.2	Galerkin approach for treatment of the FRSE	153
		7.2.1 Selection of the basis functions	153
		7.2.2 Galerkin solution for the FRSE	156
		7.2.3 Transformation to the homogeneous initial and boundary	
		$\overline{\mathrm{conditions}}$	158
	7.3	Convergence analysis	158
	7.4	Illustrative examples	162
	7.5	Concluding remarks	166

List of Tables

2.5.1 Comparison of the AE for Example [2.5.2] for $N = 6$	43
2.5.2 The MAE for Example 2.5.2 for different values of N and t	43
2.5.3 The AE for Example 2.5.2 for $N = 14$	44
2.5.4 The MAE for Example 2.5.2 for $N = 18$	44
2.5.5 Comparison of the best AE for Example 2.5.3 at $t = 0.1$ and	
t=0.5	45
2.5.6 The AE for Example 2.5.3 for different values of N and t	46
2.5.7 MAE for Example 2.5.4 and CPU time (seconds)	47
2.5.8 MAE for Example $2.5.5 and CPU time (seconds)$	48
3.6.1 The AE for Example 3.6.1	71
3.6.2 The MAE for Example 3.6.1 and CPU time (seconds)	72
	12
3.6.3 Comparison of the MAE of Example $3.6.2$ for different values	
of α .	73
3.6.4 Comparison of AE for Example 3.6.3.	74
3.6.5 Comparison of the MAE of Example $3.6.3$	74
3.6.6 The MAE for Example $3.6.3$ and CPU time (seconds)	74
4.5.1 The AE of Example 4.5.1	97
4.5.2 The AE of Example [4.5.1]	97
4.5.3 MAE of Example 4.5.2	98
4.5.4 Comparison of the MAE of Example 4.5.2	98
4.5.5 The AE of Example 4.5.3	100
4.5.6 The AE of Example 4.5.3	100
5.4.1 Comparison of the MAE for Example 5.4.2	121
0.1.1 Comparison of the MILL for Example 0.1.2	141

5.4.2 Comparison of the MAE for Example 5.4.2.	122
5.4.3 Comparison of the MAE for Example 5.4.2	123
5.4.4 The AE for Example 5.4.3	123
6.5.1 The AE for Example 6.5.1 at $M=10,\ \ell=\tau=1$	145
6.5.2 Comparison of MAE for Example 6.5.1 at $M=8,\ \ell=\tau=1$	145
6.5.3 The AE for Example 6.5.1 at $M=13, \gamma=\delta=1, \ell=1, \tau=2$.	145
6.5.4 CPU time (seconds) of Example 6.5.1	145
6.5.5 CPU time (seconds) of Example 6.5.1	146
6.5.6 The AE for Example 6.5.1 at $M = 18, \ \ell = 1, \tau = 10$	146
6.5.7 Comparison of AE for Example 6.5.2 at $M=10,\ \ell=\tau=1$	147
6.5.8 The AE for Example 6.5.2 at $M=14,\ \ell=1,\ \tau=2$	148
6.5.9 CPU time (seconds) of Example 6.5.2	148
6.5.10The AE of Example 6.5.3 at $\ell = \tau = 1, \ \gamma = \delta = 1$	149
6.5.11The AE for Example 6.5.3 at $M=16, \ell=1, \tau=5, \ \gamma=6, \delta=9$	149
6.5.12CPU time (seconds) of Example 6.5.3	150
7.4.1 The L_2 errors for Example 7.4.1.	162
7.4.2 The L_{∞} errors for Example 7.4.1	163
7.4.3 The L_2 errors for Example 7.4.2.	164
7.4.4 The AE for Example 7.4.2	164
7.4.5 The AE for Example 7.4.3	165

List of Figures

2.5.1 The MAE of Example 2.5.2 at $\ell = 1$ and different values of N.	43
2.5.2 The exact and numerical solutions for Example 2.5.2 at $N = 14$.	44
2.5.3 The graphs of the approximate solution (left side) and AE (right	
side) for Example 2.5.3 for $\ell = 1$ and $N = 10$	46
2.5.4 The exact and computed approximations for Example 2.5.3 at	
N=14	46
2.5.5 The AE graphs of Example $2.5.4$ at different values of t and for	
N=10.	47
2.5.6 The exact and approximate solutions at $N = 16$. for Example	
2.5.5	48
3.6.1 The AE graphs of Example 3.6.1.	72
3.6.2 The exact and approximate solutions for Example 3.6.2	73
3.6.3 The Log10(absolute error) of Example 3.6.3	74
4.5.1 The approximate solution and the MAE graphs of Example 4.5.1	97
4.5.2 The exact and approximate solutions of Example $4.5.2$	98
4.5.3 MAE graphs of Example 4.5.2	99
4.5.4 The approximate solution and the MAE graphs of Example 4.5.3	100
5.4.1 The MAE for Example 5.4.1	119
5.4.2 The AE graph of Example 5.4.2	120
5.4.3 The AE graph of Example $5.4.2$	121
5.4.4 The MAE graph of Example 5.4.2	123
5.4.5 The approximate and exact solutions of Example 5.4.3	124

6.5.1 The Log10(AE) of Example 6.5.1 for different values of M	146
$6.5.2\mathrm{The}\;L_{\infty}$ Error of Example $6.5.1$	146
6.5.3 The Log10 (AE) of Example 6.5.2 for different values of M .	148
6.5.4 The Log10(AE) of Example 6.5.3 for different values of M	149
	1.00
7.4.1 The L_{∞} error for Example 7.4.1	163
7.4.2 The L_{∞} error for Example 7.4.2.	164
$7.4.3\mathrm{The}\;L_{\infty}$ error for Example $7.4.3$	165

List of Abbreviations

AE Absolute error
MAE Maximum absolute error
HPDEs Hyperbolic first-order partial differential equations
FDWE Fractional diffusion-wave equation
FDWED Fractional diffusion wave equation with damping
FIVP Fractional initial value problem
FRSE Fractional Rayleigh-Stokes equation
CPU Computational time
$C_i(x)$ The shifted Chebyshev polynomials of the fifth-kind
$Y^*(x)$

Acknowledgements

First of all, my gratitude and thanks to gracious **Allah** who always helps and guides me. I would like to thank **the prophet Mohamed** "peace be upon him" who urges us to seek knowledge and who is the teacher of mankind.

I would like also to thank the supervision committee:

Prof. Dr. Galal Mahrous Moatimid, Professor of Applied Mathematics, Faculty of Education, Ain Shams University, for accepting supervision of me, learning me ethics and scientific research assets, his good care for me and for his continuous support to reach the best.

Dr. Youssri Hassan Youssri, Associate Professor of Pure Mathematics, Faculty of Science, Cairo University, for suggesting the topic of the thesis, who provided me with guidance and continuous encouragement. He offered me much of his precious time and provided me with his wisdom and knowledge through many discussions we had.

Prof. Dr. Waleed Mohamed Abd-Elhameed, Professor of Pure Mathematics, Faculty of Science, Cairo University, who provided me with guidance and continuous encouragement. He did his best for the success of this work through precious comments, valuable reviews and remarks. His passion and extraordinary dedication to work have always inspired me and encouraged me to work harder.

Also, I would like to thank **Prof. Dr. Ehab Fathy Abd-Elfattah** and the head of Mathematics Department **Prof. Dr. Mohamed Yahia Abouzeid** for providing me with all facilities required for the success of this work.