

## بسم الله الرحمن الرحيم

 $\infty\infty\infty$ 

تم رفع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992





# EVALUATION OF TEMPERATURE EFFECT ON THE PERFORMANCE OF A FULL SCALE WWTP SIMULATED THROUGH EXTENDED ASM1

By

#### Noha Adel Helal Elhattab

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
Civil Engineering – Public works

# EVALUATION OF TEMPERATURE EFFECT ON THE PERFORMANCE OF A FULL SCALE WWTP SIMULATED THROUGH EXTENDED ASM1

## By Noha Adel Helal Elhattab

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
Civil Engineering – Public works

Under the Supervision of

Prof. Dr. Hisham S. Abdel Halim Dr. Minerva Edward Matta

Professor of Sanitary & Environmental Engineering Faculty of Engineering, Cairo University Associate Professor of Sanitary & Environmental Engineering Faculty of Engineering, Some University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2022

# EVALUATION OF TEMPERATURE EFFECT ON THE PERFORMANCE OF A FULL SCALE WWTP SIMULATED THROUGH EXTENDED ASM1

### By Noha Adel Helal Elhattab

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
Civil Engineering – Public works

Approved by the
Examining Committee

Prof. Dr. Maha Moustafa El Shafei, External Examiner

Dr. Mona Mohamed Galal-Eldin, Internal Examiner

Prof. Dr. Hisham S. Abdel Halim, Thesis Main Advisor

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
March
2022

Engineer's Name: Noha Adel Helal Elhattab

**Date of Birth:** 1/11/1981 **Nationality:** Egyptian.

E-mail: nohaelhattab@hotmail.com

**Phone:** 002 010 00071145

Address: Zayed Dunes Compound, Sheikh zayed

city, Giza, Egypt

**Registration Date:** 1/10/2013 **Awarding Date:** ..../..../

**Degree:** Doctor of Philosophy

**Department:** Civil Engineering - Public Works

**Supervisors:** 

Prof. Dr. Hisham S. Abdel Halim Dr. Minerva Edward Matta

**Examiners:** 

Prof. Maha Moustafa El Shafei (External examiner)
Dr. Mona Mohamed Galal-Eldin (Internal examiner)
Prof. Dr. Hisham S. Abdel Halim (Thesis main advisor)

#### **Title of Thesis:**

Evaluation of temperature effect on the performance of a full scale WWTP simulated through extended ASM1

#### **Key Words:**

COD; Extended Activated Sludge Model No. 1; Operating parameters; Temperature; WWTP

#### **Summary:**

A simulation model was adapted for the 6th of October wastewater treatment plant (WWTP) located in Cairo, Egypt. The study aims to investigate the effect of variable temperature on treated effluent wastewater with regards to various operational parameters. The temperature in the arid region where the plant is located varies significantly between summer and winter. The simulation model was created using the MATLAB platform and applies Extended Activated Sludge Model No. 1 (ASM1) equations for WWTP modeling. This model reflected the equations of ASM1 with modified Monod kinetics for the dissociation of soluble biodegradable organic substrates into unionized organic substrates to be utilized by aerobic heterotrophs and autotrophs. Model calibration and sensitivity analyses of kinetic parameters were conducted for model validation. A comprehensive study was performed to examine the effect of various operating parameters on the removal of chemical oxygen demand (COD) at different temperatures using the calibrated model. The operational conditions studied are dissolved oxygen (DO), hydraulic retention time (HRT), and mixed liquor volatile suspended solids (MLVSS).



## **Disclaimer**

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

| Name: Noha Elhattab | Date: | / / |
|---------------------|-------|-----|
| Signature:          |       |     |

## **Dedication**

This Thesis is dedicated to my role model that I have always looked up to, Prof. Dr. Ibrahim Elhattab; my uncle, my boss and my mentor who passed earlier this year. May he rest in peace.

### Acknowledgments

I would like to express my great appreciation to Professor Dr. Hisham Abdel Halim and Dr. Minerva Edward, my research supervisors, for all the support and encouragement they gave me. Without their guidance and constant feedback this PhD would not have been achievable.

My deep appreciation goes out to Dr. Minerva Matta who encouraged and supported me by every means throughout the thesis in every possible way not only as a professor but also as a sincere dear sister.

Many thanks also to Dr. Mostafa M. El-Seddik for his continuous support, and encouragement to complete this thesis. Dr. El-Seddik continuous support and fruitful ideas made it possible to complete this thesis using the MATLAB platform.

I would also like to say a heartfelt thank you to my family, father and mother for trusting my capabilities and efforts and supporting by whatever effort it may take to move forward.

And finally to my sweet little family, Ehab, Karma, Hamza and Adam who has been by my side throughout this PhD, living every single minute of it, and without whom, I would not have had the courage to embark on this journey in the first place.

#### **Table of Contents**

| Disclain  | ner                                                   | i   |
|-----------|-------------------------------------------------------|-----|
| Dedicati  | ion                                                   | ii  |
| Acknow    | rledgments                                            | iii |
| List of T | Tables                                                | vii |
| List of F | Figures                                               | ix  |
| Nomenc    | clature                                               | xii |
| Abstract  | t                                                     | xiv |
| Chapter   | r 1: Introduction                                     | 1   |
| 1.1.      | General                                               | 1   |
| 1.2.      | Problem statement                                     | 2   |
| 1.3.      | Thesis Outline                                        | 3   |
| 1.4.      | Research Objectives                                   | 3   |
| Chapter   | r 2: Literature Review                                | 5   |
| 2.1.      | General                                               | 5   |
| 2.2.      | Wastewater treatment                                  | 6   |
| 2.2.1.    | Preliminary wastewater treatment                      | 7   |
| 2.2.2.    | Primary wastewater treatment                          | 7   |
| 2.2.3.    | Secondary wastewater treatment                        | 7   |
| 2.2.4.    | Tertiary treatment stage                              | 8   |
| 2.3.      | Wastewater Characteristics                            | 9   |
| 2.3.1.    | Main physical characteristics of domestic sewage      | 9   |
| 2.3.2.    | Main chemical characteristics of domestic sewage      | 9   |
| 2.3.2.1.  | Total Solids                                          | 9   |
| 2.3.2.2.  | Organic Matter                                        | 10  |
| 2.3.2.3.  | Total Nitrogen                                        | 11  |
| 2.3.2.4.  | Total phosphorus                                      | 11  |
| 2.3.2.5.  | pH                                                    | 11  |
| 2.3.2.6.  | Alkalinity                                            | 11  |
| 2.3.2.7.  | Chlorides                                             | 11  |
| 2.3.2.8.  | Oils And Grease                                       | 11  |
| 2.3.3.    | Organisms existing in municipal sewage                | 12  |
| 2.4.      | Activated sludge process                              | 12  |
| 2.5.      | Operational parameters of wastewater treatment plants | 13  |
| 2.5.1.    | HRT                                                   | 13  |

| 2.5.2.   | MLVSS - Mixed liquor volatile suspended solids        | 13 |
|----------|-------------------------------------------------------|----|
| 2.5.3.   | Mean cell residence time MCRT                         | 14 |
| 2.5.4.   | Sludge Age                                            | 14 |
| 2.6. B   | Sacterial Growth                                      | 15 |
| 2.6.1.   | Ordinary heterotrophic organism (OHO) active biomass  | 15 |
| 2.6.2.   | Autotrophic organisms                                 | 15 |
| 2.7. N   | Modelling Approaches                                  | 16 |
| 2.7.1.   | Black-box models                                      | 16 |
| 2.7.2.   | Grey-box models                                       | 18 |
| 2.7.3.   | White box modelling                                   | 18 |
| 2.7.3.1. | Modelling of Attached Growth reactors                 | 19 |
| 2.7.3.2. | Modelling of suspended growth reactors                | 22 |
| 2.8. A   | Activated Sludge Model 1 (ASM1)                       | 22 |
| 2.8.1.   | Model Dynamic Processes:                              | 28 |
| 2.8.2.   | Assumptions and Limitations of using ASM1             | 29 |
| 2.9. A   | Activated Sludge model No.2 (ASM2)                    | 31 |
| 2.10.    | Activated Sludge Model No. 3 (ASM3)                   | 31 |
| 2.10.1.  | Model Dynamic Processes:                              | 33 |
| 2.10.2.  | Limitations of using ASM3                             | 37 |
| 2.11.    | Wastewater characterization in terms of COD fractions | 38 |
| 2.11.1.  | Protocols dedicated to wastewater treatment modelling | 38 |
| 2.11.2.  | Comparison of Existing Protocols                      | 39 |
| 2.12.    | Good Modeling Practice                                | 42 |
| 2.12.1.  | Benefits of GMP                                       | 42 |
| 2.13.    | ASM1 Model                                            | 44 |
| 2.13.1.  | ASM1 Model Equations:                                 | 44 |
| 2.13.2.  | ASM1 Model Parameters:                                | 48 |
| 2.14.    | Computerized Simulation Programs                      | 50 |
| 2.14.1.  | WEST                                                  | 50 |
| 2.14.2.  | STOAT                                                 | 50 |
| 2.14.3.  | SIMBA                                                 | 50 |
| 2.15.    | Mathematical Model                                    | 51 |
| 2.15.1.  | MATLAB                                                | 51 |
| 2.15.2.  | Creating a Code                                       | 51 |
| 2.16     | Previous studies                                      | 52 |

| Chapte  | er 3: Methods and Statements                                             | 54      |
|---------|--------------------------------------------------------------------------|---------|
| 3.1.    | Introduction                                                             | 54      |
| 3.2.    | Treatment plant subject to study                                         | 54      |
| 3.3.    | Problem statement                                                        | 64      |
| 3.4.    | Workflow                                                                 | 65      |
| 3.5.    | Model Approach                                                           | 67      |
| 3.5.1.  | Extended ASM1 Equations                                                  | 68      |
| 3.6.    | Model Validation                                                         | 71      |
| 3.6.1.  | Model Calibration                                                        | 71      |
| 3.6.2.  | Sensitivity analysis                                                     | 75      |
| 3.6.3.  | Model verification                                                       | 76      |
| 3.7.    | Simulation of 6 October WWTP                                             | 76      |
| 3.7.1.  | The effect of temperature on various operating conditions                | 76      |
| Chapte  | er 4: Results and Discussion                                             | 79      |
| 4.1.    | Introduction                                                             | 79      |
| 4.2.    | Model Validation                                                         | 79      |
| 4.2.1.  | Heterotrophic biomass concentration                                      | 79      |
| 4.2.2.  | Calibration process                                                      | 79      |
| 4.2.3.  | Sensitivity Analysis                                                     | 80      |
| 4.2.4.  | Model Verification                                                       | 82      |
| 4.3.    | Simulation Runs                                                          | 85      |
| 4.3.1.  | MLVSS Variance with temperature                                          | 86      |
| 4.3.2.  | DO Variance with temperature                                             | 95      |
| 4.3.3.  | HRT Variance with temperature                                            | 100     |
| 4.3.4.  | Comparison between the different operating parameters under study        | 105     |
| 4.4.    | Comparison of the research results and previous studies                  | 106     |
| 4.4.1.  | Comparison between calibration parameters                                | 106     |
| 4.4.2.  | Comparison between removal efficiencies at different operating condition | ons 107 |
| Chapte  | er 5: Conclusions                                                        | 108     |
| 5.1.    | General                                                                  | 108     |
| 5.1.1.  | Approach                                                                 | 108     |
| 5.2.    | Conclusions                                                              | 108     |
| 5.3.    | Recommendations for upcoming studies                                     | 110     |
| Referen | nces                                                                     | 111     |
| ANNE    | X A Routinely collected Data for the WWTP and Sampling Data              | 119     |

## **List of Tables**

| Table 2. 1 Influent fractions adopted in the ASM family [48]                          | 24             |
|---------------------------------------------------------------------------------------|----------------|
| Table 2. 2 kinetic rate expressions of ASM3 [47]                                      | 35             |
| Table 2. 3 kinetic parameters of ASM3 [46,53]                                         |                |
| Table 2. 4 Comparison between STOWA and WERF protocols [82]                           | 41             |
| Table 2. 5 Activated Sludge Matrix (ASM1) matrix [84]                                 | 47             |
| Table 2. 6 Parameters and characteristics which may be assumed [83]                   | 48             |
| Table 2. 7 Parameters and characteristics that must be evaluated [84]                 | 48             |
| Table 2. 8 Typical values of the parameters [84]                                      | 49             |
| Table 2. 10 Steps for creating a MATLAB code                                          | 52             |
| Table 3. 1 Wastewater characteristics of the 6 <sup>th</sup> of October WWTP in mg/L  |                |
| Table 3. 2 Wastewater characteristics inside the aeration tank                        | 58             |
| Table 3. 3 Measured parameters of the PST effluent                                    | 60             |
| Table 3. 4 FST effluent measured parameters                                           | 60             |
| Table 3. 5 Temperature and pH of influent flow against months of study                | 61             |
| Table 3.6 Stoichiometric parameters and Kinetic parameters [48, 57,53]                | 70             |
| Table 3. 7 COD fractions for settled sewage [81, 97]                                  | 72             |
| Table 3. 8 COD fractions for primary settled effluent of 6 of October WWTP            | 72             |
| Table 3. 9 Maximum specific growth rate of bacteria at different temperature interv   | als            |
|                                                                                       | 77             |
| Table 3. 10 Input data matrix                                                         |                |
| Table 4. 1 Average heterotrophic biomass concentration for 6 October WWTP             |                |
| Table 4. 2 Calibrated values of kinetic and stoichiometric parameters for the WWT     | P at           |
| average conditions                                                                    |                |
| Table 4. 5 Measured operating conditions for different runs used in the extended AS   |                |
|                                                                                       |                |
| Table 4. 6 Average values and standard deviation of the calibrated and effluent total |                |
| COD                                                                                   |                |
| Table 4. 5 average values of the analyzed data of WWTP                                |                |
| Table 4. 6 X <sub>BH</sub> values versus Categorized MLVSS for WWTP under study       |                |
| Table 4. 7 Simulated results of effluent COD versus MLVSS at different temperatu      |                |
|                                                                                       |                |
| Table 4. 8 Solids Retention time computed at different MLVSS                          |                |
| Table 4. 9 Relationship between Heterotrophic maximum growth rate and temperat        |                |
|                                                                                       | 92             |
| Table 4. 10 Total COD removal efficiency at different DO values for categorized       | ~ <del>-</del> |
| temperature ranges Analysis                                                           |                |
| Table 4. 11 Constant values considered in the HRT sets of runs                        | 100            |
| Table 4. 12 Total COD removal efficiency for different HRT values for different       | 100            |
| temperature ranges Analysis                                                           |                |
| Table 4. 13 Values of F/M ratio at different HRT                                      | 104            |

## **List of Figures**

| Figure 2. 2 Example of the media used in Hybrid system                                            | 8   |
|---------------------------------------------------------------------------------------------------|-----|
| Figure 2. 3 Segregation of Solids in wastewater composition [8]                                   | 10  |
| Figure 2. 4 Schematic of Nitrification process                                                    |     |
| Figure 2. 5 ARX model prototype for modeling setteability dynamics [24]                           | 17  |
| Figure 2. 6 Graphical representation of Monod's equation [52, 54]                                 |     |
| Figure 2. 7 The corrected Monod model for inhibitors [53,54]                                      | 21  |
| Figure 2. 8 ASM1 model processes as defined by the IAWQ [46, 47]                                  |     |
| Figure 2. 9 Segregation of total COD as per ASM1 equations. [6]                                   | 25  |
| Figure 2. 10 ASM1 - Nitrogen components [6]                                                       | 26  |
| Figure 2. 11 Subdivisons and transformations of carbonaceous and nitrogenous matt                 | er  |
| [61]                                                                                              | 27  |
| Figure 2. 12 Storage and growth of PAOs for Substrate flows in ASM2 model [57]                    | 31  |
| Figure 2. 13 Flow of COD in ASM3 ]46 ,47]                                                         | 32  |
| Figure 2. 14 Main five steps of GMP unified protocol [65]                                         | 43  |
| Figure 3. 1 Schematic diagram of the process of the WWTP under study                              | 54  |
| Figure 3. 2 6 <sup>th</sup> October WWTP location on Google earth image                           | 55  |
| Figure 3. 3 Average Influent COD to the WWTP (mg/l)                                               | 56  |
| Figure 3. 4 Average Influent BOD <sub>5</sub> to the WWTP (mg/l)                                  | 56  |
| Figure 3. 5 Average Influent TSS concentration                                                    |     |
| Figure 3. 6 Average COD primary settled concentration                                             | 57  |
| Figure 3. 7 Average Primary settled BOD <sub>5</sub> concentration                                | 57  |
| Figure 3. 8 Average Primary settled TSS concentration                                             | 58  |
| Figure 3. 9 MLVSS actual measurements for the period of study                                     | 59  |
| Figure 3. 10 Sampling points' location                                                            | 59  |
| Figure 3. 11 pH values versus the months of study                                                 | 62  |
| Figure 3. 12 Temperature of Influent flow against months of study                                 |     |
| Figure 3. 13 the Influent wastewater flow of the WWTP                                             | 62  |
| Figure 3. 14 Raw influent COD to the plant, influent COD to the Biological reactor                | and |
| effluent COD from the plant versus the measurement duration                                       | 63  |
| Figure 3. 15 Measured Primary effluent COD and Primary effluent BOD5                              | 63  |
| Figure 3. 16 DO concentration in the biological reactor versus the duration of study.             | 64  |
| Figure 3. 17 Workflow diagram of the research work                                                | 66  |
| Figure 3. 18 Model Approach workflow                                                              | 67  |
| Figure 3. 19 Summary of influent characterization method for organic wastewater                   |     |
| components [58]                                                                                   |     |
| Figure 4. 1 Sensitivity analysis for Maximum heterotrophic specific rate of gro                   |     |
| $(\mu_{maxH})$                                                                                    |     |
| Figure 4. 2 Sensitivity analysis of half saturation coefficient of heterotrophs (k <sub>s</sub> ) |     |
| Figure 4. 3 Sensitivity analysis of ammonification rate (k <sub>a</sub> )                         |     |
| Figure 4. 4 Sensitivity analysis of ammonification rate (b <sub>h</sub> )                         |     |
| Figure 4. 5 Measured influent and effluent COD values and simulated effluent COD                  |     |
| values of the aeration tank during the WWTP study period                                          | 83  |

| Figure 4. 6 Percentage of removal for COD simulated and measured values                  | .83 |
|------------------------------------------------------------------------------------------|-----|
| Figure 4. 7 MATLAB simulation results for (a) soluble COD and (b) heterotrophic          |     |
| biomass concentration of randomly chosen actual readings                                 | .84 |
| Figure 4.8 3D simulation of Model verifications                                          | .85 |
| Figure 4. 9 Relationship between the heterotrophic biomass concentration and the         |     |
| measured MLVSS relative to the WWTP under study                                          | .86 |
| Figure 4. 10 Relation between MLVSS and heterotrophic active biomass concentration       |     |
|                                                                                          |     |
| Figure 4. 11 MATLAB simulation results for different MLVSS concentrations at a           |     |
| temperature range of 15 - 20°C                                                           | 88  |
| Figure 4. 12 MATLAB simulation results for different MLVSS concentrations at a           | ••• |
| temperature range of 20 - 25°C                                                           | 88  |
| Figure 4. 13 MATLAB simulation results for different MLVSS concentrations at a           | •00 |
| temperature range of 25 - 30°C                                                           | 89  |
| Figure 4. 14 MATLAB simulation results for different MLVSS concentrations at a           | .07 |
| temperature range of 30 - 35°C                                                           | 80  |
| Figure 4. 15 Relation between the Solids retention time and Heterotrophic active         | .67 |
| biomass concentration                                                                    | 01  |
| Figure 4. 16 Removal Efficiency of the biological reactor at different temperatures w    |     |
| reference to the Solids retention time                                                   |     |
| Figure 4. 17 Relationship between Heterotrophic maximum growth rate and                  | .72 |
| temperature                                                                              | 02  |
| Figure 4. 18 Temperature Effect on the heterotrophic biomass concentration and the       | .93 |
|                                                                                          | 02  |
| removal efficiency of the biological treatment of the 6 October WWTP                     | .93 |
| Figure 4. 19 Simulated and measured effluent COD concentrations for different            | 05  |
| MLVSS concentrations at different temperature ranges                                     | .93 |
| Figure 4. 20 Simulated Results for soluble effluent COD versus hydraulic retention       | 0.0 |
| time at different temperature values for DO of 1 gm/m <sup>3</sup>                       | .96 |
| Figure 4. 21 Simulated Results for soluble effluent COD versus hydraulic retention       | 0.6 |
| time at different temperature values for DO of 1.5 gm/m <sup>3</sup>                     |     |
| Figure 4. 22 Simulated Results for soluble effluent COD versus hydraulic retention       |     |
| time at different temperature values for DO of 2.0 gm/m <sup>3</sup>                     | .97 |
| Figure 4. 23 Simulated Results for soluble effluent COD versus hydraulic retention       |     |
| time at different temperature values for DO of 2.5 gm/m <sup>3</sup>                     | .97 |
| Figure 4. 24 Simulated Results for soluble effluent COD versus hydraulic retention       |     |
| time at different temperature values for DO of 3.0 gm/m <sup>3</sup>                     |     |
| Figure 4. 25 Simulated and measured total COD concentrations in effluent waste wat       |     |
| for different DO concentrations at different temperature ranges                          |     |
| Figure 4. 26 Relationship between Heterotrophs growth rate and removal efficiencies      |     |
| different Dissolved oxygen concentrations                                                | .99 |
| Figure 4. 27 Simulated results for the total effluent COD versus temperature at variable | ole |
| HRT                                                                                      |     |
| Figure 4. 28 Removal Efficiency of total COD versus different temperature values at      |     |
| different HRT1                                                                           | 101 |
| Figure 4. 29 Simulated Results for soluble effluent COD versus hydraulic retention       |     |
| time at different temperature values for HRT of 4 hrs                                    | 102 |