

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سامية زكى يوسف

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

Antibacterial And Cytotoxic Effects of Cysteamine Alone And in Combination With Various Intracanal Medications (In Vitro Study)

Thesis submitted to the Endodontic Department,

Faculty of Dentistry, Ain Shams University

For

Partial fulfillment of requirements of the master's degree in Endodontics

by

Esraa Adel Mohamed Abd-Elhameed El-Gammal

B.D.S.

(Ain Shams University, 2016)

Supervisors

Prof. Dr. Salma El Ashry

Professor of Endodontics
Endodontic Department,
Faculty of Dentistry, Ain Shams University

Prof. Dr. Abeer Hashem

Professor of Endodontics
Endodontic Department,
Faculty of Dentistry, Ain Shams University

Dr. Sara Hossam

Lecturer in Endodontics
Endodontic Department,
Faculty of Dentistry, Ain Shams University

بسم الله الرحمن الرحيم

{قَالُوا سُبْحَانَكَ لَا عِلْمَ لَنَا إِلَّا مَا عَلَّمْتَنَا إِنَّكَ أَنْتَ الْعَلِيمُ الْحَكِيمُ} أنتَ الْعَلِيمُ الْحَكِيمُ} (سورة البقرة: الآية 32)

Acknowledgment

All praise be to ALLAH the most gracious, the most merciful.

In memory of our beloved Prof. Dr. Salma El Ashry, Professor of Endodontics, Faculty of Dentistry, Ain Shams University, who left our world but remained by her sincere advice and knowledge in our hearts and minds, I want to express my gratitude to her in my first steps in this study project.

I would like to express my sincerest gratitude to Prof. Dr. Abeer Hashem Mahran, Professor of Endodontics, Faculty of Dentistry, Ain Shams University for her advice, muchappreciated help, valuable remarks, and meticulous revision throughout this work.

I would also like to thank Dr. Sara Hossam, Lecturer of Endodontics, Faculty of Dentistry, Ain Shams University for her continuous supervision, guidance, encouragement, and support.

My deepest thanks to Prof. Dr. Soha A. El-Hady Professor of medical microbiology and immunology, Faculty of Medicine, Ain Shams University, for her valuable support in microbiologic investigations.

Dedication

This work is dedicated to....

My parents who have been a constant source of emotional and moral support in every aspect of life, this thesis would certainly not have existed without them.

My sweet sister and brother who supported me, without them none of my success would be possible.

My husband who has always been there to support and encourage me, always providing every possible help, this thesis would certainly not have existed without him.

And last but not least to my professors, colleagues, and friends at the Endodontic Department, Ain-Shams University, with whom I spent a wonderful time and learned a lot that, will certainly help me in my lif

Table of Contents

List of tablesii
List of figuresiii
List of abbreviationsv
Introduction1
Literature review
I- Microbiology in endodontics and E. faecalis infection:
II- Intracanal medications; their antibacterial effect and biocompatibility:5
A. The nature, antibacterial and cytotoxic effect of Cysteamine: 5
B. The antibacterial and cytotoxic effect of Calcium hydroxide: 10
C. The antibacterial and cytotoxic effect of Chlorhexidine:
D. The antibacterial and cytotoxic effect of Triple antibiotic baste: 18
Aim of the study
Materials and Methods
I- Materials, instruments, and devices:
II- Methods: 26
Part A: Antibacterial effect of Cysteamine alone and in combination
with various intracanal medications:
Part B: Cytotoxicity assessment:
Results
Part I: Antibacterial results
Part II: Cytotoxicity (viability percent):
Discussion 67
Summary 85
Conclusions 89
Future Recommendations
References 91
Arabic summary

List of tables

Table 1: Materials used in the study25
Table 2: Mean and Standard deviation (SD) values for log bacterial
count (CFU) for different groups47
Table 3: Descriptive statistics of cell viability % in Cysteamine
samples50
Table 4: Descriptive statistics of cell viability % in CHX
Cysteamine combination group53
Table 5: Descriptive statistics of cell viability % in CaOH
Cysteamine combination sample
Table 6: Descriptive statistics of cell viability % in TAP
Cysteamine combination group58
Table 7: Descriptive statistics of cell viability % of the four testing
groups and their concentrations
Table 8: IC50 conc % of each testing medication

List of figures

Figure 1: Samples classification and randomization between testing
groups for antibacterial test29
Figure 2: SEM (2000X) image of the root canal at 30 days inoculation
with E. Faecalis Blue arrow shows extracellular polymeric matrix
coating dentinal surface35
Figure 3: SEM (4000X) image of the root canal at 30 days inoculation
with E. Faecalis. Blue arrow shows extracellular polymeric matrix
coating dentinal surface35
Figure 4: SEM (8000X) images of root canals at 30 days inoculation
with E. Faecalis. The blue arrow showed bacterial aggregations and the
red arrow showed dentinal tubule invasion36
Figure 5: Paper point samples applied in sterile test tubes for culture
analysis
Figure 6: Samples classification for MTT assay40
Figure 7: Preparations used for MTT investigation40
Figure 8: Representation of the twelve medications to cell volume
concentration used for assessment of cytotoxicity41
Figure 9: 0.22μm syringe filter42
Figure 10: Bar chart showing average log bacterial count (CFU) for
different groups47

Figure 11: Evaluation of cell viability % after Cysteamine treatment
(group I) using MTT assay50
Figure 12: Evaluation of cell viability% with CHX Cysteamine combination (group II) using MTT assay53
Figure 13: Evaluation of cell viability% with CaOH Cysteamine combination (groupIII) using MTT assay
Figure 14: Evaluation of cell viability% with TAP Cysteamine combination (group IV) using MTT assay
Figure 15: Bar chart showing average cell viability % for different groups
Figure 16: Evaluation of inhibitory concentration (IC50) post BHK cells
treatment with testing medications66

List of abbreviations

Abbreviation	Full-term
RC	Root canal
NaOCl	Sodium hypochlorite
CHX	Chlorhexidine
EDTA	Ethylenediaminetetraacetic acid
СаОН	Calcium hydroxide
Cys	Cysteamine
CFU	Colony-forming unit
EF	E faecalis
ВНІ	Brain heart infusion
SEM	Scan electron microscope
OD	Optical density
Ul	Microlitre
VBNC	Viable but non-cultivable

Introduction

During the last years, biofilm formation inside root canals and its role in apical periodontitis was supported. So, biofilm eradication and canal disinfection became a great priority in endodontic treatment. And this is achieved by compensatory techniques such as instrumentation to different canal sizes, irrigation protocols, and disinfectants that cooperate to eradicate endodontic infection. Although mechanical instrumentation of root canals can reduce bacterial population, effective elimination of bacteria can't be achieved without the use of antimicrobial root canal irrigation and medication⁽¹⁾.

The success of root canal treatment depends mainly on eliminating microbial contamination from the root canal system or decreasing their level to the extent that allows the immunity to deal with the remaining bacteria. The main reason for endodontic failure is the presence of some species that remain in root canals such as Enterococcus faecalis, which are more resistant to disinfectants, causing a persistent intra or extraradicular infection⁽²⁾.

There are many types of intracanal disinfectants with variable degrees of effectiveness. Also, cytotoxicity level differs from one medicament to another, so further research is made to find the most effective one with the least adverse effects. Intracanal medications and their degradation products must be biocompatible with Periapical tissues as they are in close contact. Otherwise, these degradation products can

cause high levels of inflammation, stimulated by several mediators which can induce tissue destruction. Therefore, these drugs should provide the ability to induce repair in the injured area without interfering with cementum and bone formation⁽³⁾.

One of the medicaments under research is Cysteamine which is used in many other fields of medicine. It is derived from Cysteine and is the simplest amino thiol. The pKa value of it is 9.42. It deprotonates in an alkaline environment and forms thiolate ions which are responsible for breaking the disulfide bond of bacterial proteins, by the active thiol group, due to which proteins are denatured and bacteria lose their structural integrity ⁽⁴⁾. One of its advantages is its mucolytic property, making it highly effective against different types of bacteria present in root canal biofilm. Breaking of mucopolysaccharides by Cysteamine will disrupt the structural integrity of biofilm. It is used as a resistant breaker for various antibiotics, so it's considered valuable material in the anti-bacteriology field.

Our hypothesis of this study is to assess its antibacterial effect against E. Faecalis and compare the improvement effect to its combination with various other intra-canal medicaments against E. faecalis inside the root canal, and to detect the cytotoxic effect of Cysteamine and its combinations on fibroblast cells to detect its level of acceptance to be used.

Literature review

I- Microbiology in endodontics and E. faecalis infection:

Endodontic microbiology has been studied for many years to reach observations that have an impact on the type of treatment and medication used. E. faecalis is gram-positive cocci that can occur singly, in pairs, or as short chains. They are facultative anaerobes, possessing the ability to grow in the presence or absence of oxygen and can grow in harsh environments as in extreme alkaline pH =9.6. Our challenge; as endodontic specialists, is to find methods to eradicate this microorganism during and after root canal treatment. At that time, using good aseptic technique, increasing apical preparation sizes, and inclusion of full-strength sodium hypochlorite and 2% chlorhexidine irrigants were the most effective methods to eliminate E. faecalis.

Stuart et al. ⁽⁵⁾ showed that the prevalence of E. faecalis is low in primary endodontic infections and high in persistent infections. They are more commonly associated with asymptomatic cases than with symptomatic ones.

Arias-Moliz et al.⁽⁶⁾ studied the minimal film eradication concentration of different medications at different time intervals on E. faecalis biofilm and the results showed that NaOCl was the most effective after one minute at 0.00625% concentration and CHX was effective after five minutes at 2% concentration. Other medications such as EDTA, citric, and phosphoric acid were not effective at the tested time and concentrations.

Saber & El-Hady⁽⁷⁾ made a study to develop a mature biofilm of Enterococcus faecalis inside the root canal system and to test its susceptibility to some antimicrobial agents. Biofilm formation and maturation were monitored using SEM. Biofilms of bacteria were exposed to Amoxicillin +clavulanate, Ciprofloxacin, Clindamycin, Doxycycline, and calcium hydroxide as intracanal medications for one week. Results showed that SEM examination confirmed the formation of a mature biofilm at the end of the incubation period. All the chemotherapeutic agents used were significantly better than Calcium hydroxide in the elimination of biofilm bacteria. So, they concluded that the method used for bacterial biofilm development and maturation is reliable and can be used to assess the anti-bacterial potential of endodontic materials.

Alghamdi & Shakir⁽⁸⁾ discussed the effect of Enterococcus faecalis on endodontics treatment and the available treatment options to decrease the amount of E. faecalis during root canal treatment. They concluded that the role of E. faecalis in the failure of endodontic treatment is confirmed. Furthermore, E. faecalis has specific characteristics that enable it to escape chemo mechanical instrumentation during root endodontic treatment by having the ability to form biofilms and colonize in remote unreachable areas away from the main canals, such as accessory canals, apical deltas, and isthmuses. In addition, E. faecalis uses different mechanisms to survive in harsh environments, as activating some survival genes, using alternative metabolic pathways, living in an area with high sources of nutrients, and possessing bacterial synergism and aggregation capacity.