

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سامية زكى يوسف

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

Ain Shams University College of Women for Arts, Science and Education

Physics Department

Preparation and characterization of vanadium pentoxide by spray pyrolysis technique

Thesis

Submitted to Physics department

College of Women for Arts, Science and Education

Ain shams university

In partial fulfillment of M. Sc. Degree in:

(Solid state physics)

Presented by

Mai Adel Mohamed Mahmoud

Supervised By

Prof. Dr. Samiha Tadros Bishay

Physics Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt.

Prof. Dr. Mostafa Abd El Moemen Boshta

Solid State Physics Department, National Research Centre, 12311Dokki, Giza, Egypt.

Ain Shams University College of Women for Arts, Science and Education Physics Department

Thesis for the Degree of Master of Science

(Solid state physics) Presented by

Mai Adel Mohamed Mahmoud

Title of the thesis

Preparation and characterization of vanadium pentoxide by spray pyrolysis technique

Thesis Supervision:

Prof. Dr. Samiha TadroS Bishay

Physics Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt.

Prof. Dr. Mostafa Abd El Moemen Boshta

Solid State Physics Department,	National Re	esearch Centre	e, 12311Dokki,	Giza
Egypt.				

Date of Approval:
Approval of Faculty Council:

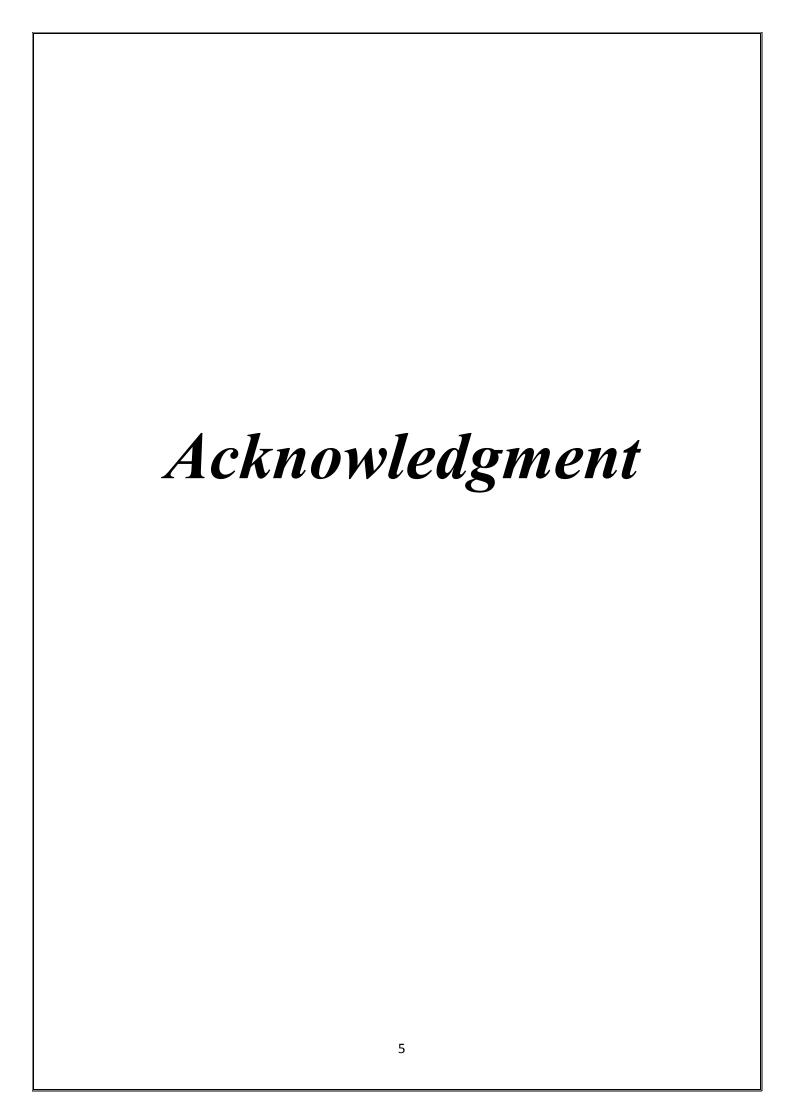
Date of Research:

Ain Shams University College of Women for

Arts, Science and Education

Physics Department

Year of graduation:


Year of Approval:

Student name: Mai Adel Mohamed Mahmoud
Scientific degree: Bachelor of Science (Physics and computer)
Department: Physics Department
Faculty: College of Women for Arts, Science and Education
University: Ain Shams University

فسيتبري الله المائيك وركب والمؤاو الملف أوك

Acknowledgment

In the name of Allah, Praise is to Allah, who guided me to do this thesis and everything in my life. *I like to express my thanks and grateful appreciations to:*

Prof. Dr. Samiha Tadros, Prof. of material science, College of Women for Arts, Science and Education, Ain Shams University, for her guidance, supervision, assistance and fruitful scientific discussion through this thesis, this work would not have been possible without the encouragement and support of her.

Prof. Mostafa Abd El Moemen Boshta, Department of Solid-state Physics, National Research Center, for suggested the point of research and scientific discussion through this thesis. This work would not have been possible without the encouragement and support of him.

Lastly, and most importantly, I would like to thank my parents, especially my mother and my husband for supporting and encouraging me to pursue this degree. Without their encouragement, I would not have finished this thesis ever.

I thank Allah for being with me in every moment giving me the strength to overcome all the obstacles and for benevolently showering upon me this blessing in life. Without his blessing, it would not have been possible to complete this work.

List of content

Title	Page
List of Content	7
List of Figures	10
List of Tables	12
Abstract	13
Introduction	14
Chapter 1	17
Theoretical Background	18
1.1. Safety and hazard	20
1.1.A. Health hazard	20
1.1.A. a. Acute effect	20
1.1.A. b. Chronic effect	21
1.1.B. Fire hazard	21
1.2. Crystal structure of vanadium pentoxide	21
1.3. Physical and chemical properties	25
1.3.A. Physical properties	25
1.3.A. a. Optical properties	26
1.3.A. b. Electrical and magnetic properties	27
1.3.A.c. Mechanical properties of vanadium	28
1.3.B. Chemical properties	29
1.3.B.a. Reduction to lower oxidation	29
1.3.B.b. Acid-base reaction	29
1.3.B.c. Other redox reaction	30
1.3.B.d. properties of free atoms	30
1.4. Technique of preparing	32
1.4.1. Physical deposition	32

1.4.1.a. Thermal evaporation technique	33
1.4.1.b. Electron beam evaporation,	33
1.4.1.c. Molecular beam epitaxy (MBE)	33
1.4.1.d. Sputtering deposition	34
1.4.1.e. Pulsed laser deposition	34
1.4.1.f. Cathodic arc deposition (arc-PVD)	34
1.4.1.g- Electro-hydrodynamic deposition (electrospray deposition)	34
1.4.2. Chemical deposition	36
1.4.2.a. Plating deposition process	36
1.4.2.b. Chemical solution deposition (CSD)	36
1.4.2.c. Langmuir-Blodgett method	36
1.4.2.d. Spin coating or spin casting	37
1.4.2.e. Dip coating method	37
1.4.2.f. Chemical vapor deposition (CVD)	37
1.4.2.g. Plasma enhanced CVD (PECVD)	38
1.4.2.h. Atomic layer deposition (ALD)	38
1.4.2.i. Spray Pyrolysis technique	38
1.5. Chemical spray pyrolysis (CSP)	38
1.5.1. Introduction to the CSP	39
1.5.2. Description of the Chemical spray pyrolysis	41
I- Contents of Spray pyrolysis system	41
II Factors governing the film formation mechanism depends on	42
1.5.3 Advantages and disadvantages of the CSP	43
Chapter 2 (Literature Survey)	45
Literature Survey	46
Chapter 3 (Experimental Technique and	72
Characterization Methods)	
Experimental Technique and Characterization Methods	73
3.1. Spray pyrolysis deposition technique	73
3.1.1. Spray pyrolysis set up	73

3.1.2. Working principle of Spray pyrolysis technique:	75
3.1.3. Substrate heating	75
3.1.4. Solution flow control	75
3.1.5. Carrier gas control	76
3.1.6. Cleaning procedure	76
3.1.7. Nozzle-Substrate Distance	76
3.1.8. Reduction of the Experimental Variables	76
3.2. Mechanism of thin film formation by spray pyrolysis method	77
3.2.1. Atomization of the precursor solution	78
3.2.1.i. Pneumatic (air pressure) atomizers	78
3.2.2. Aerosol transportation	79
3.2.3.Precursor decomposition	80
3.2.4. Processes occur with increasing substrate temperature	81
3.2.5. Factors affecting the thin film formation	83
3.2.6. Sample preparations:	84
3.3. Characterization methods	85
3.3.1. Crystal Structure analysis (X-ray diffraction (XRD)	85
3.3.1.a. Lattice constants	88
3.3.1.b. Crystallite size	88
3.3.1.c. Macrostrain (ε)	88
3.3.1.d. Dislocation density	89
3.3.1.e. Number of crystallites per unit volume	89
3.3.2. Scan Electron Microscope (SEM)	90
3.3.2.a. Working principle of an electron microscope	90
3.3.2.b. Scan Electron Microscope set up	92
3.4. Thin film thickness measurement	93
3.4.1.Thin film thickness	93
3.4.2. White-light interference method:	93
3.4.3.Pattern Comparisons method	95
3.5. Photoluminescence (PL)	96

3.5.1. Transmittance and Absorbance	97
3.5.2.Direct and indirect optical transitions	98
3.6. Electrical measurements	101
3.6.1.Electrical resistivity	101
3.6.2. Temperature dependence of resistivity of the semiconductor	103
Chapter 4 (Results and discussion)	104
Results and Discussion	105
4.1. Effect of the deposition temperature on Vanadium pentoxide (V_2O_5) thin films	106
4.1.1. Effect of the deposition temperature on Structural Characterization of vanadium pentoxide thin films	106
4.1.1.1 Lattice constant	107
4.1.1.2 Crystallite size	107
4.1.2. Effect of the deposition temperature on the Morphological properties of vanadium pentoxide thin films	108
4.1.3. Effect of the deposition temperature on the Electrical properties	110
4.1.4. Effect of the deposition temperature on the Optical properties of vanadium pentoxide thin films	111
4.2. Effect of the deposition time on the properties of vanadium pentoxide thin films	118
4.2.1. Effect of the deposition time on the Electrical properties of vanadium pentoxide thin films	118
4.2.2. Effect of the deposition time on the Optical properties of vanadium pentoxide thin films	119
Conclusion	124
References	129
Arabic Conclusion	148

List of Figures

Title Description	Page
Fig. (1.1) Vanadium crystal structure image (ball and stick style)	24

Fig. (1.2) Vanadium crystal structure image (space-filling style)	24
Fig.(1.3) The Kossel shell structure of vanadium	31
Fig.(1.4) Classification of Thin Film Deposition Techniques	35
Fig.(1.5) A Schematic diagram of spray pyrolysis technique	42
Fig. (3.1) Set—up of the chemical spray pyrolysis system used in this work.	74
Fig. (3.2) shows the used schematic spray pyrolysis equipment	74
Fig.(3.3)Mechanism of thin film formation by the spray pyrolysismethod	82
Fig. (3.4) Philips X-Ray Diffraction model (PW3040)	85
Fig. (3.5) the reflection of x-rays in the (hkl) plane of a crystal	87
Fig. (3.6) Diffraction angle	87
Fig. (3.7) Schematic diagram of an electron microscope	91
Fig. (3.8) Scan Electronic Microscope FEI Quantum model (FEG 250)	92
Fig. (3.9) Light interference	94
Fig. (3.10) Stylus profilmeter model Dektak 150	95
Fig.(3.11) Transmittance vs Concentration - Absorbance vs Concentration	97
Fig. (3.12) UV/Vis/NIR spectrophotometer model Jasco-670	98
Fig. (3.13) shows the direct and indirect transition	99
Fig. (3.14) Electrical resistivity measurement by two probe method	102
Fig. (3.15) Hall Effect measurement Lake Shore model -7700A	102
Fig. (4.1) X-ray diffraction patterns of (V_2O_5) thin films at temperatures 300, 350, 400 and 450 °C	106
Fig. (4.2) SEM images of (V ₂ O ₅) thin films sprayed at350,400,450 and 500°C	108
Fig. (4.3) Electrical conductivity of (V ₂ O ₅) thin films deposited at different temperatures	110
Fig. (4.4) optical transmission spectrum of (V ₂ O ₅) at different substrate temperature	111
Fig. (4.5) optical reflection spectrum of (V ₂ O ₅) at different substrate temperature	112

Fig. (4.6) (a, b, c) relation between $(\alpha h \upsilon)^2$ and $h \upsilon$ for $(V_2 O_5)$ thin films prepared at different substrate temperatures	114
Fig.(4.7) The effect of T_{sub} on n_r of the films prepared	116
Fig. (4.8) The effect of deposition temperature on extension coefficient of the (V_2O_5) films at Time = 20 min	117
Fig.(4.9) Conductivity of (V ₂ O ₅) thin films deposited at 450°C for different times	118
Fig. (4.10) Optical transmission spectrum of (V ₂ O ₅) prepared for different deposition times	119
Fig. (4.11) Optical reflection spectrum of (V ₂ O ₅) prepared for deposition times	120
Fig. (4.12) Relation between $(\alpha h \upsilon)^2$ and $h \upsilon$ for (V_2O_5) thin films prepared for different deposition times and 450°C	121
Fig.(4.13) The effect of deposition time on n _r of the (V ₂ O ₅) films	122
Fig. (4.14) The effect of deposition time on extension coefficient of the (V_2O_5) films at T_{sub} = 450 °C	123

List of Tables

Table. (1.1) Some physical parameters of vanadium	
Table. (1.2) Some essential parameters of Vanadium pentoxide	26
Table. (1.3) The mechanical properties of vanadium	28
Table. (1.4) Atomic properties of Vanadium	31
Table. (3.1) the optimized values of spray parameters during the deposition process	77

Abstract

A chemical spray pyrolysis technique was used to deposit a vanadium pentoxide (V_2O_5) thin films on glass substrate with a deposition temperature ranged from 300°C to 500°C in step of 50°C. From ammonium Meta vanadate aqua precursor solution molarity of (0.1 M) was used as a source of vanadium.

The effect of deposition temperature on structure, morphological, electrical conductivity and optical properties was analyzed at constant deposition time, solution molarities and the distance between spray nozzle and substrate.

X-ray diffraction patterns shown that an orthorhombic cubic structure with growth along (001) plane.

With increasing the substrate temperature, the electrical conductivity was increased, and the scanning electron microscopy clarified that the crystalline of V_2O_5 thin films was effectively modified.

The optical results revealed that energy band gap of V₂O₅ films deposited at 400°C, 450°C and 500°C is 2.38 eV for direct allowed transition. Based on the observed results the V₂O₅ phase can be well controlled by altering the substrate temperature. All prepared thin films up to 400°C show transparency in both visible and near IR region.

The effect of deposition time (5 min to 20 min) in step of (5 min) on the electrical and optical properties of V_2O_5 prepared at 450°C deposition temperature was studied. The results showed that, the conductivity increased with increasing the deposition time.

The highest conductivity values $(9.5 \times 10^{9}) \Omega^{-1} \text{ cm}^{-1}$ was obtained for the sample prepared at deposition time of 20 min.

It can be seen that transmission and reflection of the film deposited for 5 min has the highest value that can be attributed to the thickness effect of the prepared samples.

Keywords: V₂O₅, XRD, Morphological, Optical, Electrical properties, Deposition temperature, deposition time, Crystallinity and grain growth.

Introduction

Among the transitions metal oxide semiconductors, vanadium pentoxide, particularly in thin-film structure, takes concerned widely through many years because of its varied range of uses [1, 9]. Multi-valance layered construction characterized by wide-ranging band-gap, respectable stability of chemical and thermal properties. The outstanding thermo-electric feature that is the character which sort a vanadium pentoxide (V_2O_5) hopeful material for micro-electronics, electro-chemical, and optic-electronic devices [2-5].

Recent researches studies have pointed out that with the application of electrical signal [40],[34]. Nano fibers made up of vanadium oxide can act as vicarious muscles that can contract [9].

Many techniques such as pulsed laser deposition(PLD) [10] gives a brief overview of the progress that it has made starting with control of deposition parameters such as a deposition temperature [36,37],[32,33]. Sol-gel spin coating [11] where that an orthorhombic structured thin film is transformed to β -(V₂O₅) nanorods by subsequent annealing at 500 °C.

The as-deposited (V_2O_5) thin films were produced by thermal evaporation technique [12] without intentional substrate heating present an amorphous structure. After thermal treatment for (1h) at atmospheric environment conditions the films show a predominant (001) plane reflection of the orthorhombic (V_2O_5) phase. Direct current radio frequency (DC/RF) sputtering [13] was studied the influence of ambient atmospheres on the structure, optical properties, and morphology of the thin films after annealing.

The characterization and the transition behaviors in the annealing process were investigated by the dominant sequence clustering (DSC). The results demonstrated that (V_2O_5) films underwent four different transition behaviors during post-deposition annealing due to the different oxygen proportion of ambient. Electron beam evaporation technique [14] showed that SEM micrographs perceived the prepared films were nearly homogeneous with densely