

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

A SIMULATION STUDY OF MIXED REFRIGERANT ABSORPTION REFRIGERATION SYSTEM USING DIFFERENT ABSORBENTS

By

Noha Mahmoud Ahmed Mohamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Chemical Engineering

A SIMULATION STUDY OF MIXED REFRIGERANT ABSORPTION REFRIGERATION SYSTEM USING DIFFERENT ABSORBENTS

By **Noha Mahmoud Ahmed Mohamed**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Chemical Engineering

Under the Supervision of

Dr. Ahmed Soliman Mohamed Fawzy	Dr. Ahmad Wafiq Abdelmohsen Aboelnasr
Associate Professor	Lecturer
Chemical Engineering Department	Chemical Engineering Department
Faculty of Engineering,	Faculty of Engineering,
Cairo University	Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2022

A SIMULATION STUDY OF MIXED REFRIGERANT ABSORPTION REFRIGERATION SYSTEM USING DIFFERENT ABSORBENTS

By **Noha Mahmoud Ahmed Mohamed**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Chemical Engineering

Approved by the Examining Committee

Prof. Dr. Ahmed Soliman Mohamed Fawzy Thesis Main Advisor

Prof. Dr. Mahmoud Gamal El-Din Badran External Examiner

Chairman and Managing Director Egyptian Abu El-Hole Company for Oils and Detergents (Formerly, Egyptian Salt and Soda Company)

Prof. Dr. Mamdouh Ayyad Gadallah Ibrahim External Examiner

Professor, Chemical Engineering Department Faculty of Engineering, Port-Said University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2022 Engineer's Name: Noha Mahmoud Ahmed Mohamed

Date of Birth: 13./11/1984 **Nationality:** Egyptian

E-mail: nohamahmoud1311@gmail.com

Phone: +201013567582

Address: Moustafa Fahmy St., Gleem, Alexandria, Egypt

Registration 1/10/2017

Date:

Awarding Date: / /2022

Degree: Master of Science

Department: Chemical Engineering

Supervisors:

Prof. Dr. Ahmed Soliman Mohamed Fawzy

Dr. Ahmad Wafiq

Examiners:

Prof. Dr. Mahmoud Gamal El-Din Badran (External examiner)

Chairman and Managing Director

Egyptian Abu El-Hole Company for Oils and Detergents

(Formerly, Egyptian Salt and Soda Company)

Prof. Dr. Mamdouh Ayyad Ibrahim (External examiner)

Professor, Chemical Engineering Department Faculty of Engineering, Port-Said University

Dr. Ahmed Soliman Mohamed Fawzy (Thesis main advisor)

Title of Thesis:

A SIMULATION STUDY OF MIXED REFRIGERANT ABSORPTION REFRIGERATION SYSTEM USING DIFFERENT ABSORBENTS.

Key Words:

Absorption Refrigeration; Hydrocarbons Refrigerants; Mixed Refrigerants;

Simulation; Optimization.

Summary:

The performance of a mixed refrigerant absorption refrigeration cycle was studied to explore the feasibility to achieve an ultra-low range of chiller temperatures. The use of ethane-propene refrigerant mixtures with different compositions in combination with a wide range of hydrocarbon solvents were simulated using ASPEN HYSYS software. A parametric study was conducted for identifying the optimal operating conditions for each targeted evaporator temperature. The results revealed that the performance of the studied mixed refrigerant is generally enhanced at conditions of low absorption temperature and/or low condenser temperature. Chiller temperature in the range of -60 to -90 °C was revealed to be achievable using a cascade refrigeration system with a COP in the range of (0.18 to 0.32). The optimal absorbent for most of the studied mixture compositions, regarding maximal COP, and minimal (PP/Q_E), was found to be MCC5. However, commercial solvents in the same carbon atom range were proved to offer about the same performance at the optimal disclosed operating conditions. The proposed system was found to achieve electrical power savings in the range of 15-53% of that would be consumed by a VCRS for the same chiller duty and temperature as operating under the same conditions, depending on %ethane in the refrigerant mixture.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Noha Mahmoud Ahmed Mohamed Date: / /2022

Signature:

Dedication

My humble effort I dedicate to my sweet and loving Father and Mother, whose affection, love, encouragement and prayers of day and night make me able to get such success and honor, along with all hard working and respected teachers.

Acknowledgments

First, I would like to thank my advisors, Dr. Ahmed Soliman and Dr. Ahmad Wafiq, for the patient guidance, encouragement and support they have provided. I have been extremely lucky to have advisors who cared so much about my work, and who responded to my questions and queries so promptly.

I would also like to thank my committee members for letting my defense be an enjoyable moment, and for their brilliant comments and suggestions.

A special thanks to my family. Words cannot express how grateful I am to my mother and father for all of the sacrifices that they have made on my behalf.

Table of Contents

DISCLAIM	ER	I
DEDICATI	ON	II
ACKNOWI	LEDGMENTS	III
	CONTENTS	
LIST OF TA	ABLES	VI
LIST OF FI	GURES	VII
NOMENCL	ATURE	IX
ABSTRACT	Γ	XI
	1: INTRODUCTION	
	2 : LITERATURE REVIEW	
	EFRIGERATION SYSTEMS	
2.1.1.	Refrigerants Historical Progression	3
2.1.1.1.	Historical Refrigerants	3
2.1.1.2.	Fluorinated Refrigerants	4
2.1.1.3.	. 6 6	
2.1.1.4.	J	
2.1.1.5.	Nanorefrigerants	
2.1.1.6.	Mixed Refrigerants	7
2.1.2.	Classification of Refrigeration Systems	10
2.1.2.1.	Conventional Vapor Compression Refrigeration System	11
2.1.2.2.	J	
2.1.2.3.	8	
I.	Liquid Suction Heat Exchanger Subcooling (LSHX)	
II.	Dedicated Mechanical Subcooling (DMS)	16
III.	Integrated Mechanical Subcooling (IMS)	17
2.1.2.4.		
I.	Single Mixed Refrigerant (SMR) VCRC	
>	Conventional Single Mixed Refrigerant (SMR)	
>	SMR with phase Separator (SMSR)	
>	Multistage SMR-VCRC	
II.	The propane precooled mixed refrigerant process (C3MR /PPMR)	
III.	The dual mixed refrigerant process (DMR)	
IV.	The mixed Refrigerant Cascade process (MFC)	
2.1.2.5.	Conventional Absorption Refrigeration Systems (C-ARC)	
2.1.2.6.	Ejector Enhanced Absorption Refrigeration System	
2.1.2.7.	Half Effect Vapor Absorption Refrigeration System	
2.1.2.8.	Multi Effect Vapor Absorption Refrigeration System	
I.	Double Effect Absorption Refrigeration System	
>	Series Flow Double-effect Absorption Refrigeration Cycle	
>	Parallel flow Double-effect Absorption Refrigeration Cycle	
II.	Triple effect Absorption Refrigeration System	
2.1.2.9.	Combined/Hybrid (Absorption-Compression) Refrigeration Systems	
2.1.2.10	Solar Derived Refrigeration Systems	
/ I 1	Removerant Netection Citiena	4 /

I.	The Requirements of Working Fluid in Vapor Compression System	
II.	The Requirements of Working Fluid in Absorption Refrigeration System	
2.2.	PREVIOUS RESEARCH WORK RELATED TO USING MR IN ARSS	
2.2.1.	Mixed Hydrocarbons Refrigerant Related Work	
2.2.2.	Hydrocarbons Absorption Refrigeration Related Work	41
СНАРТЕ	R 3: METHODOLOGY	44
3.1.	SIMULATION METHODOLOGY	44
3.2.	Working Fluids	45
3.3.	ABSORPTION REFRIGERATION SYSTEM CONFIGURATIONS	46
3.3.1.	Process Design.	46
3.3.2.	System Specifications	47
>	Absorber	47
>	Strong Solution Pump	47
>	Solution Heat Exchanger	
>	Separation Tower	
>	Refrigerant PRV	
> >	Solvent PRV	
>	Solvent Pre-Cooler	
3.4.	VAPOR COMPRESSION REFRIGERATION SYSTEM CONFIGURATION	
	R 4 : RESULTS AND DISCUSSION	
4.1.	SOLVENT OPTIMIZATION FOR FAVORED MOLECULAR WEIGHT RANGE	
4.1.1.	Optimal Solvent Regarding Maximum COP	
4.1.1.		
	Optimal Solvent Regarding Minimum (PP/Q _E)	
4.1.3.	Optimal Solvent Regarding COP and (PP/Q _E)	
4.2.	OPERATING CONDITIONS OPTIMIZATION	
4.2.1.	Optimal Absorption Temperature (Tb)	
4.2.1		
4.2.1		
4.2.1 4.2.1		
4.2.1	·	
4.2.1		
4.2.2.	Optimal Condenser Temperature	
4.2.2	•	
4.2.2		
4.2	.2.3. Effect of Condenser Temperature on Regenerator Temperature (Tg), and Regenerator	tor Duty
	(Q_G)	69
4.2.2	1 (2)	
4.2.2 4.2.2		
4.2.2	·	
4.3.	COMMERCIAL SOLVENT UTILIZATION FEASIBILITY	
4.4.	COMPARING PROPOSED ARS WITH VCRS	
	R 5 : CONCLUSIONS AND RECOMMENDATIONS	
REFERE	NCES	79

List of Tables

Table 2.1: Early refrigerants [21]	4
Table 2.2: Refrigerants from different chemical groups [27, 30]	6
Table 2.3: Thermodynamic properties of R-12 and hydrocarbons [104]	.41
Table 3.4: Thermodynamic properties of employed Refrigerants	.45
Table 3.5: Thermodynamic properties of employed Solvents	.45
Table 4.1: Cooling Performance of each studied refrigerant regarding the minimum	
applicable Condenser Temperature (Tc)	.50
Table 4.2: The Five Ref. mix. Compositions Related to each studied Te	.61
Table 4.3: Optimal Condenser Pressure and Temperature Range for Different MR	
Compositions Regarding Minimum Reflux Ratio at Tb of 30 ^o C	.74
Table 4.4: Minimal Achievable COP, at Optimal Operation Conditions for Different	
MR Compositions	.75
Table 4.5: The Performance of MCC5 Vs n-Hexane for Different MR Compositions	at
·	.76
Table 4.6: Power Savings of the Proposed Cascade ARS over VCRS	.77

List of Figures

Figure 2.1: Phase Change Process of Binary Zeotropic Mixture [37]	8
Figure 2.2: Heat Exchange Composite Curves for Different NGL Processes [40]	9
Figure 2.3: The simple VCRC [44]	
Figure 2.4: The: T-S diagram for VCRC [44]	12
Figure 2.5: P-h diagram for VCRC [20]	12
Figure 2.6: Schematic diagram of Ejector [45].	13
Figure 2.7: Schematic diagram of Ejector Enhanced VCRC [48]	14
Figure 2.8: Schematic diagram VCRC LSHX subcooling [20].	15
Figure 2.9: Schematic diagram of DMS type subcooled VCRC [51]	16
Figure 2.10: Schematic diagram of IMS type subcooled VCRC [52]	17
Figure 2.1: Single Stage Compression SMR without Phase Separator [55]	18
Figure 2.2: SMSR Schematic Diagram [39]	
Figure 2.3: Multi Compression SMR with Phase Separator [39]	20
Figure 2.4: The PPMR process Schematic Diagram [39].	
Figure 2.5: DMR (Dual Mixed Refrigerant) process Schematic Diagram [61]	22
Figure 2.6: MFC Process Schematic Diagram [63]	
Figure 2.7: C-ARC Schematic Diagram [64].	
Figure 2.8: Ammonia-Water ARC Schematic Diagram [67]	26
Figure 2.19: Ejector Enhanced LPC-ARC Schematic Diagram [64]	28
Figure 2.9: Half Effect Absorption Refrigerant Cycle Schematic Diagram [65]	
Figure 2.10: Series Flow Double Effect DE-ARC Schematic Diagram [87]	
Figure 2.11: Parallel Flow DE-ARC Schematic Diagram [88]	
Figure 2.12: Parallel Flow Triple Effect Absorption Refrigerant Cycle (TESFVARC	
Schematic Diagram [91]	33
Figure 2.13: Series Flow Triple Effect Absorption Refrigerant Cycle (TEPFVARC)	
Schematic Diagram [91]	
Figure 2.14: Cascade Hybrid Refrigerant Cycle Schematic Diagram [95]	
Figure 2.15: (SCR) Schematic Diagram [97]	
Figure 2.16: Solar Absorption Refrigerant System (SAR) Schematic Diagram [97].	
Figure 2.28: Progression of Refrigerants Selection Criteria [32]	
Figure 3.17: Absorption Refrigerant System Model Schematic Diagram	
Figure 3.18: Vapor Compression Refrigerant System Model	
Figure 4.1: Solvent M.wt range Optimization for the Maximum COP	
Figure 4.2: C6 Range Solvent Optimization for the Maximum COP.	
Figure 4.3: Solvent M.wt range Optimization for the Minimum (PP/QE)	
Figure 4.4: C6 Solvent Optimization for the Minimum (PP/QE)	
Figure 4.5: C7 Solvent Optimization for the Minimum (PP/Q _E)	
Figure 4.6: Effect of Absorption Temperature on (PP/Q _E), Te -50 ^o C	
Figure 4.7: Effect of Absorption Temperature on COP, Te -50 ^o C	55
Figure 4.8: Effect of Condenser Temperature on (Pump Power/Ciller Duty), For	~ ~
Evaporation Temperature of -50° C	56
Figure 4.9: Effect of Condenser Temperature on COP, Te -50 ^o C	
E' 4.10 EC 4 CAL 4' E 4 (DDO) T 700 C	
Figure 4.10: Effect of Absorption Temperature on (PP/Q _E), Te -70 ^o C	
Figure 4.11: Effect of Absorption Temperature on COP, Te -70 ^o C	57

Figure 4.12: Effect of Condenser Temperature on (Pump Power/Ciller Duty), For	
Evaporation Temperature of -70° C	
Figure 4.13: Effect of Condenser Temperature on COP, Te -70 ^o C	58
Figure 4.14: Effect of Absorption Temperature on (PP/QE), Te -90° C	59
Figure 4.15 Effect of Absorption Temperature on COP, Te -90 ^o C	59
Figure 4.16: Effect of Condenser Temperature on (Pump Power/Ciller Duty), For	
Evaporation Temperature of -90° C	60
Figure 4.17: Effect of Condenser Temperature on COP, Te -90 ^o C	60
Figure 4.18: Effect of Absorption Temperature on Solvent flow Rate (Kg/h)	
Figure 4.19: Effect of Absorption Temperature on Pump Power (KJ/h)	62
Figure 4.20: Effect of Absorption Temperature on (Pump Power/Chiller Duty)	63
Figure 4.21: Effect of Absorption Temperature on Reboiler Duty	64
Figure 4.22: Effect of Absorption Temperature on COP value	64
Figure 4.23: Effect of Absorption Temperature on Pre-Cooler Duty	65
Figure 4.24: Effect of Absorption Temperature on Absorber Duty at fixed Pre-Cool	er
Temperature	66
Figure 4.25: Effect of Absorption Temperature on Condenser Duty	67
Figure 4.26: Effect of Condenser Temperature on Chiller Duty at fixed Absorber	
Temperature	68
Figure 4.27: Effect of Condenser Temperature on Distillation Column Overhead	
Pressure at fixed Absorber Temperature.	69
Figure 4. 28: Effect of Condenser Temperature on Reboiler Temperature at fixed	
	70
Figure 4.29: Effect of Condenser Temperature on Reboiler Duty at fixed Absorber	
Temperature	70
Figure 4.30: Effect of Tc on COP at fixed Absorber Temperature	71
Figure 4.31: Effect of Condenser Temperature on the Ratio (PP/QE)	71
Figure 4. 32: Effect of Condenser Temperature on the Pre-Cooler Duty	72
Figure 4.33: Effect of Condenser Temperature on Reflux Ratio	73
Figure 4.34: Relation between Reflux Ratio the Regenerator Overhead Pressure	73
Figure 4.35: Effect of Condenser Temperature on Condenser Duty	
Figure 4.36: COP by n-Hexane Vs MCC5 at Optimum Conditions	
Figure 4.37: PP/Q _E by n-Hexane Vs MCC5 at Optimum Conditions	77

Nomenclature

ΔT Temperature Gradient
 ANN Artificial Neural Network
 ARC Absorption Refrigeration Cycle
 ARS Absorption Refrigeration System

CC Cooling Capacity
CFCs Chlorofluorocarbons
CMR Cold Mixed Refrigerant
COP Coefficient of Performance

CR Circulation Ratio

CWHE Coil Wounded Heat Exchanger

DMR Dual Mixed Refrigerant ECC5 Ethylcyclopentane

GWP Global Warming Potential
HCFCs Hydrochlorofluorocarbons
HCMP Hydrocarbon Mixed Pofrices

HCMR Hydrocarbon Mixed Refrigerant

HCs Hydrocarbons HFCs Hydrofluorocarbons HG High Generator

HPA High Pressure Absorber HPG High Pressure Generator

HPMR High Pressure Mixed Refrigerant HTG High Temperature Generator

HX Heat Exchanger
J-T valve Joule-Thomson Valve

LG Low Generator LHP Loop Heat Pipe

LNG Liquefied Natural Gas
LPA Low Pressure Absorber
LPG Low Pressure Generator

LPMR Low Pressure Mixed Refrigerant LTG Low Temperature Generator

MCC5 Methylcyclopentane
MR Mixed Refrigerant
MRC Mixed Refrigerant Cycle
MMR Main Mixed Refrigerant

MTG Medium Temperature Generator

M.wt. Molecular Weight
NBP Normal Boiling Point

NG Natural Gas

NGL Natural Gas Liquefaction
ODP Ozone Depletion Potential
Patm Atmospheric Pressure

PMR Pre-cooling Mixed Refrigerant

PP Pump Power

PPMR Propane Precooled Mixed Refrigerant

PP/QE Pump Power/ Chiller Duty

PRV Pressure Reducing Valve

 $\begin{array}{ll} Q_A & Absorber\ Duty \\ Q_C & Condenser\ Duty \\ Q_E & Evaporator\ Duty \\ Q_G & Regenerator\ Duty \end{array}$

R-170 Ethane R-1270 Propylene

R-11 Trichlorodifluoromethane
 R-12 Dichlorodifluoromethane
 R-134a 1,1,2-Tetrafluoroethane
 R22 Chlorodifluoromethane

R600 Butane R600a Iso-butane R-290 Propane RR Reflux Ratio

SDR Solution Distribution Ratio SMR Single Mixed Refrigerant

SS Strong Solution

Tb Absorber Temperature
Tc Condenser Temperature
Te Evaporator Temperature
Tg Regenerator Temperature

VCRC Vapor Compression Refrigeration Cycle VCRS Vapor Compression Refrigeration System

WFs Working Fluids

WMR Warm Mixed Refrigerant

WS Weak Solution