

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Transforming Growth Factor beta 2 (TGF- β 2) in Breast-fed versus premature formula-fed preterm Neonates

Thesis

Submitted for Partial Fulfillment of Master Degree In Pediatrics

By

Mohamed Ali Mohamed Abou Warda

M.B.B.,ch Ain-Shams University, 2008

Under supervision of

Assist, Prof. Rania Ibrahim Hossni Ismail

Assistant Professor of Pediatrics & Neonatology Faculty of Medicine-Ain-Shams University

Dr. Wafaa Othman Ahmed

Lecturer of Pediatrics & Neonatology Faculty of Medicine-Ain-Shams University

> Faculty of Medicine Ain Shams University 2022

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to ALLAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to Ass. Prof. Rania Ibrahim Ibossni Ismail, Assistant Professor of Pediatrics, Faculty of Medicine - Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Wafaa Osman Ahmed,** Lecture of Pediatrics, Faculty of Medicine – Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance, participation and guidance, throughout this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Mohamed Ali

List of Contents

Title	Page No.
List of Abbreviations	5
List of Tables	ii5
List of Figures	9
Introduction	1
Aim of the Work	4
Review of Literature	
Prematurity	5
Necrotizing Enterocolitis (NEC) & Feeding intolerance (FI)	8
₹ Transforming Growth Factor β	32
Subjects and Methods	44
Results	57
Discussion	74
Summary	81
Conclusion	84
Recommendations	85
References	
Arabic Summary	

List of Abbreviations

Abb.	Full term
AAP	American academy of pediatrics
BF	
BM	Breast milk
CBC	Complete blood count
CPAP	Continuous positive airway pressure
CRP	C-Reactive protein
CS	Cesarean section
CSF	Cerebro spinal fluid
DHM	Donor human milk
DM	Diabetes Mellitus
ELBW	Extremely low birth weight
FI	Feeding intolerance
GA	Gestational age
GIT	Gastrointestinal tract
HGS	Hepatocyte growth factor substrate
HPF	Hydrolyzed protein formula
Ig	Immunogloblin
IUGR	Intrauterine growth retardation
LBW	Low birth weight
MV	Mechanical ventilation
NEC	Necrotizing enterococitis
NICU	Neonatal intensive care unit
NS	Neonatal sepsis
NVD	Norma vaginal deliver

List of Abbreviations Cont...

Abb.	Full term
PDA	Patent ductus arteriosus
PTF	Premature formula
RDS	Respiratory distress syndrome
SIP	Spontaneous intestinal perforation
TGF-β	Transforming growth factor-β
TPN	Total parental nutrition
VLBW	Very low birth weight

List of Tables

Table No.	Title Page I	No.
Table (1):	Neonatal problems associated with premature infants	
Table (2):	Signs and Symptoms Associated with NEC	
Table (3):	Ways to prevent NEC and their level of evidence	
Table (4):	Supportive Care for the Infant with NEC	29
Table (5):	Treatment of necrotizing enterocolitis	30
Table (6):	Effects of various cytokines on intestinal mucosal development	
Table (7):	Signs and Symptoms Associated with NEC	53
Table (8):	Maternal and neonatal demographic data in BM and PTF fed neonates	
Table (9):	Initial diagnoses	59
Table (10):	Comparison between BM and PTF regarding laboratory data	
Table (11):	Comparison between BM and premature formula-fed neonates regarding level of TGF-β2 when the baby was fed 75ml/kg/day.	•
Table (12):	Comparison between BM and premature formula-fed neonates regarding primary and secondary outcomes	
Table (13):	Correlation between TGF-β2 and the studied parameters in all patients.	
Table (14):	Relation of TGF-β2 to demographic data (neonatal sex, maternal illness and type of	•
π-1-1- (15).	delivery)	
Table (15):	Relation of respiratory support, feeding intolerance and NEC to TGF-β2	68
Table (16):	Relation between CRP and TGF-β2	
Table (17):	Relation between mortality and TGF-β2	71

List of Tables Cont...

Table No.	Title	Page No.
Table (18):	Correlation between NEC with a age, Wt., CRP and maternal age	-
Table (19):	Correlation between feeding is with gestational age, birth weight	c, CRP and
Table (20):	maternal age ROC curve for TGF-β2 in prefeeding intolerance	ediction of

List of Figures

Fig. No.	Title	Page No.
Figure (1):	The multifactorial nature of the e	
Figure (2):	Pathogenesis of NEC	12
Figure (3):	Immaturity of the intestinal epitheli and neonatal mucosal immune predispose the preemie chance to invasion which triggers sequence of N	system bacterial
Figure (4):	Differences in NEC risk between and term intestine at the cellular le mucosa	vel of the
Figure (5):	Comparing the incidence of NEC or relation to gestational age	16
Figure (6):	Pathological causes & types of NEC.	
Figure (7):	Different factors favoring NEC	
Figure (8):	Differential X-Ray finding in NEC	24
Figure (9):	The Structure of (TGF- β) Isoforms	33
Figure (10):	The TGF-β signaling pathway	34
Figure (11):	Mechanism of action of TGF-β	35
Figure (12):	Role of TGF-β in intestine	38
Figure (13):	Effect of Probiotic on TGF-β	43
Figure (14):	Sex in study groups.	58
Figure (15):	Weight in study groups	58
Figure (16):	Delivery in study groups	59
Figure (17):	HB% in study group.	61
Figure (18):	WBCs in study group.	61
Figure (19):	Platelets in study group	62
Figure (20):	Comparison between BM and p formula-fed neonates regarding leve β2 when the baby was fed 75ml/kg/d	el of TGF-

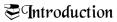
List of Figures Cont...

Fig. No.	Title	Page No.
Figure (21):	Correlation between TGF-β2 weight	
Figure (22):	Correlation between TGF-β2 and age	•
Figure (23):	Correlation between TGF-β2 and	CRP 67
Figure (24):	Relation of respiratory support wi	th TGF-β2 69
Figure (25):	Relation of feeding intolerance with	th TGF-β2 69
Figure (26):	Relation between NEC and TGF-	3270
Figure (27):	Relation between CRP and TGF-β	3271
Figure (28):	ROC curve for TGF-β2 in prefeeding intolerance	

Introduction

It is well established that breast-feeding confers protection against infectious diseases, particularly those of the gastrointestinal tract, via antimicrobial molecules such as immunoglobulins, lysozyme, lactoferrin, defensins, and oligosaccharides (*Lepage et al.*, 2012).

Accumulating evidence suggests that in addition to this passive immunoprotection, bioactive molecules in breast milk modulate the infant's mucosal and systemic immune responses and may thereby promote adequate and appropriate immune responsiveness against both potentially pathogenic and indigenous microbes and harmless environmental and dietary antigens (*Guellec et al.*, 2016).


One of the most striking differences between breast-fed formula-fed infants was evident concentrations of the Transforming Growth Factor beta 2 (TGF- β 2) isoform, TGF- β 2, with breast-fed infants exhibiting significantly higher levels of this anti inflammatory cytokine. Breast milk provides infants with direct anti-pathogenic effects via maternal microbe-specific Ιg and various other antimicrobial substances (Lepage et al., 2012).

TGF- $\beta 2$ is an important growth factor present in human and bovine milk (*Rasmussen et al.*, 2016; *Chatterton et al.*, 2013). TGF- β is an immunomodulatory cytokine that is secreted in breast milk in significant quantities. Of the 3 human TGF- β isoforms (TGF- $\beta 1$, 2, and 3), TGF- $\beta 2$ is most abundant in breast milk. Breast milk TGF- $\beta 2$ may be an important source of TGF- β during the neonatal period when endogenous production of TGF- β in the gut is still inadequate (*Maheshwari et al.*, 2011).

In the intestine, TGF- β 2 is decreased in premature infants and especially in those experiencing necrotizing enterocolitis (NEC) as compared with term infants (*Maheshwari et al., 2011*). TGF- β 2 may promote intestinal immune responses and gut functions, such as the intestinal adaptation to bacterial colonization and establishing oral tolerance by regulatory T cells, inducing IgA production and enhancing the intestinal epithelial barrier function, in newborn infants (*Rasmussen et al., 2016; Chatterton et al., 2013*).

The deficiency of TGF- β 2 may partly account for intestinal disorders, for instance the high incidence of NEC in formula-fed preterm infants (*Nguyen et al.*, 2015).

In NICU, premature formula has been used to feed the preterm infants when breast milk is not available (*Obsorn and Sinn*, 2006). Whether it enables a more rapid establishment of full enteral feeding in preterm infants needs to be investigated (*Mihatsch et al.*, 2001).

We hypothesis that breast fed preterm neonates exhibit higher level of serum TGF- $\beta 2$ and lower incidence of feeding intolerance compared to premature formula fed preterm neonates.

AIM OF THE STUDY

To study the feeding tolerance and its relation to serum TGF- $\beta 2$ in breast fed versus premature formula fed in preterm neonates.