

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Structural Engineering

Production of one-part geopolymer through thermochemical treatment process

A Thesis submitted in partial fulfillment of the requirements of the degree of Master of Science in Civil Engineering
(Structural Engineering)

by

Moataz Refaat Abdelaziz Mohamed

Bachelor of Science in Civil Engineering

(Structural Engineering)
Faculty of Engineering, Ain shams,

2016

Supervised by

Prof. Dr. El-Sayed Abdel Raouf Nasr

Professor of Properties and Testing of Materials Structural Engineering Department Ain Shams University

Dr. Mohamed Kohail Mohamed Fayez

Associate Professor Structural Engineering Department Ain Shams University

Dr. Alaa Mohsen Abdel-aziz

Assistant Professor

Physics and mathematical engineering department

Ain Shams University

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Structural Engineering

Production of one-part geopolymer through thermochemical treatment process

by

Moataz Refaat Abdelaziz Mohamed

Bachelor of Science in Civil Engineering (Structural Engineering)
Faculty of Engineering, Ain shams, 2016

Supervision Committee

Prof. Dr. El-Sayed Abdel Raouf Nasr	• • • • • • • • • • • • • • • • • • • •
Professor of Properties and Testing of Materials	
Structural Engineering Department	
Faculty of Engineering, Ain Shams University	
Dr. Mohamed Kohail Mohamed Fayez	
Associate Professor	
Structural Engineering Department	
Faculty of Engineering, Ain Shams University	
Dr. Alaa Mohsen Abdelaziz	
Assistant Professor	
Physics and mathematical engineering department	
Faculty of Engineering, Ain Shams University	

Date: / /

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Structural Engineering

Production of one-part geopolymer through thermochemical treatment process

by

Moataz Refaat Abdelaziz Mohamed

Bachelor of Science in Civil Engineering
(Structural Engineering)
Faculty of Engineering, Ain shams, 2016

Examiners' Committee

Prof. Dr. Tarek Ali El-sayed Professor of Properties and Testing of Materials Faculty of Engineering, Helwan University	
Prof. Dr. Fouad Ibrahim El-hoseiny Professor of physico-chemistry and building materials Faculty of Science, Ain Shams University	
Prof. Dr. El-Sayed Abdel Raouf Nasr Professor of Properties and Testing of Materials Faculty of Engineering, Ain Shams University	

Date: / /

TABLE OF CONTENTS

Production of one-part geopolymer through thermo-chemical treatment process

TABLE OF CONTENTS	iv
STATEMENT	i
RESEARCHER DATA	ii
ACKNOWLEDGMENTS	iii
LIST OF FIGURES	iv
LIST OF TABLES	viii
LIST OF NOTATIONS	ix
THESIS ABSTRACT	1
CHAPTER 1: INTRODUCTION	2
1.1. General	2
1.2. Research aim and objectives	2
1.3. Thesis content	3
CHAPTER 2: LITERATURE REVIEW	4
2.1. Introduction	4
2.2. Ordinary portland cement CO ₂ emission	4
2.3. Geopolymers as an alternative to OPC	5
2.4. Traditional two-part geopolymers	7
2.5. One-part geopolymers	8
2.6. Microwave heating	16
2.7. Needed research	19

CHAPTER 3: EXPERIMENTAL PROGRAM	20
3.1. Introduction	20
3.2. Materials and their characterizations	21
3.3. Material selection criteria and preparation	23
3.4. Mix proportions, casting, and curing	25
3.5. Fresh and hardened properties	27
3.6. Instrumental analysis	27
CHAPTER 4: RESULTS AND DISCUSSIONS	33
4.1. Introduction	33
4.2. Thermal energy treatment of GGBFS	34
4.3. Mini slump test	37
4.4. Water of consistency test	40
4.5. Setting time	41
4.6. Compressive strength	43
CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS	73
5.1. Summary	73
5.2. Thermochemical treatment process conclusions	73
5.3. Microwavechemical treatment process conclusions	75
5.4. Recommendations for future research	76
LIST OF REFERENCES	77

STATEMENT

This thesis is submitted as partial fulfillment of Master of Science in Civil Engineering (Structural Engineering), Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Moataz Refaat Abdelaziz Mohamed

	Signature	
Date:	/ /	

RESEARCHER DATA

Name : Moataz Refaat Adelaziz Mohamed

Date of birth : 30/3/1993

Place of birth : Cairo, Eygpt

Last academic degree : Bachelor of Science in Civil Engineering

Field of specialization : Structural Engineering

University issued the degree : Faculty of Engineering, Ain Shams University

Date of issued degree :July 2016

Current job : Civil engineer, National Authority For Tunnels

ACKNOWLEDGMENTS

First and foremost, I thank Allah, who always has the credit and the blessings, for guiding and granting me success in completing this work.

I believe that this work would have not been completed without continuous support from my family, specially my parents, who believed in me and standing by my side for every step in this research.

I would like to express my deepest gratitude and appreciation to my supervisor, Prof. Dr. El-Sayed Abdel Raouf, for his support and encouragement throughout this research project.

I would like to express my deepest gratitude and appreciation to my supervisor, Dr. Mohamed Kohail, for his guidance, support and encouragement throughout this research project and for following up with me in all its stages.

I would like to express my deepest gratitude and appreciation to my supervisor, Dr. Alaa Mohsen, for his precious help, guidance, support and participation throughout all the phases of this research project.

Special gratitude and thank to my colleague Eng. Mostafa Refaie for his permenant aid and support in all hard and good situations throughout all the phases of this research project.

LIST OF FIGURES

Fig. (2.1):	Simplified cement fabrication process, with a specific interest in the CO ₂
	emissions. (Habert et al., 2010)6
Fig. (2.2):	Constituents used in the production of geopolymer. (Hassan et al.,2019)
	8
Fig. (2.3):	Geopolymer production classification9
Fig. (2.4):	The general procedure of one-part geopolymer preparation. (Luukkonen et
	al., 2018)11
Fig. (2.5):	Environmental impact of various geopolymer mixtures. (Luukkonen et al.,
	2018)12
Fig. (2.6):	Flowability and compressive strength for geopolymer concrete mixes.
	(Luukkonen et al., 2018)13
Fig. (2.7):	Geopolymer mixes prepared using different alkaline activator. (Askarian et
	al., 2019)14
Fig. (2.8):	Compressive strength for geopolymer mixes prepared using different
	alkaline activator. (Askarian et al., 2019)14
Fig. (2.9):	TCT cement mixes prepared using CKD and FS. (Abdel-Gawwad and Khalil,
	2018)
Fig. (2.10):	Amorphous content for TCT cement prepared using CKD and FS. (Abdel-
	Gawwad and Khalil, 2018)16
Fig. (2.11):	Compressive strength values for TCT cement prepared using CKD and FS.
	(Abdel-Gawwad and Khalil, 2018)17
Fig. (2.12):	TCT cement mixes prepared using lithium slag. (Liu et al., 2019)18

Fig. (2.13):	Compressive strength values for TCT cement mixes prepared using lithium slag. (Liu et al., 2019)
Fig. (2.14):	One part geopolymer mixes prepared using chemical treatment. (Abdel-Gawwad et al., 2019b)
Fig. (2.15):	Compressive strength values for one part geopolymer mixes prepared using chemical treatment.(Abdel-Gawwad et al., 2019b)
Fig. (2.16):	Microwaves range in electromagnetic spectrum. (Wei et al., 2021)22
Fig. (2.17):	Effect of microwave incident power on heating rates of cement raw meal components. (Buttress et al., 2015)
Fig. (2.18):	Calculated energy demand for production of cement from raw meal components using microwaves. (Buttress et al., 2015)
Fig. (3.1):	XRD-patterns of GGBFS and thermochemically-treated powders26
Fig. (3.2):	XRD-patterns of GGBFS and microwavechemically-treated powders26
Fig. (3.3):	Preparation steps of OP-AAS mixes
Fig. (3.4):	Schematic diagram for experimental program37
Fig. (4.1):	XRD-pattern sof GGBFS and TCT
Fig. (4.2):	XRD-patterns of GGBFS and MCT
Fig. (4.3):	Mini slump/Water consistency values for TP, DM and TCT mixes45
Fig. (4.4):	Mini slump/Water consistency values for TP, DM and MCT mixes45
Fig. (4.5):	Setting time values for TP, DM and TCT mixes

Fig. (4.6): Setting time values for TP, DM and MCT mixes
Fig. (4.7): The effect of sintering temperature on Compressive strength development for TCT mixes
Fig. (4.8): The effect of sintering temperature on Compressive strength development for MCT mixes
Fig. (4.9): XRD-patterns for TP, DM and TCT mixes after 1 day of hydration56
Fig. (4.10): XRD-patterns for TP, DM and MCT mixes after 28 days of hydration5
Fig. (4.11): XRD-patterns for OP1000 mix after 1, 28, 56 days of hydration5
Fig. (4.12): XRD-patterns for TP, DM and TCT mixes after 1 day of hydration59
Fig. (4.13): XRD-patterns for TP, DM and MCT mixes after 28 days of hydration5
Fig. (4.14): SEM/ EDX for TP mix. (a) 1-day (b) 28days (c) EDX analysis for 28 days
Fig. (4.15): SEM/ EDX for DM mix. (a) 1-day (b) 28days (c) EDX analysis for 28 days
Fig. (4.16): SEM/ EDX for OP500 mix. (a) 1-day (b) 28days (c) EDX analysis for 28 days
Fig. (4.17): SEM/ EDX for OP1000 mix. (a) 1-day (b) 28days (c) 56days (d) EDX analysis for 28 days
Fig. (4.18): SEM/ EDX for OP-10M mix. (a) 1-day (b) 28days (c) EDX analysis for 28 days
Fig. (4.19): SEM/ EDX for OP-30M mix. (a) 1-day (b) 28days (c) EDX analysis for 28 days

Fig. (4.20): The	toxicity effect of TP, I	OM, OPC and TC	T mixes with	different
conc	centration on HFP4 cells			70
Fig. (4.21): Cont	trol well image with HFP4	cells		70
Fig. (4.22): Option	cal images for TP samples	with different dilution	ons	71
Fig. (4.23): Option	cal images for DM samples	with different dilut	ions	72
Fig. (4.24): Option	cal images for OPC sample	es with different dilu	itions	73
Fig. (4.25): Option	cal images for OP300 samp	oles with different d	ilutions	74
Fig. (4.26): Option	cal images for OP500 and	OP1000 samples wi	th dilution	74
	toxicity effect of TP, Deentration			
	cal images for OP-10M sar			
Fig. (4.29): Option	cal images for OP-30M sar	mples with different	dilutions	77
Fig. (4.30): Calc	rulated Cp values of OPC,	ΓP, DM, TCT mixes	S	79
Fig. (4.31): Calc	rulated Cp values of OPC, T	ΓP, DM, MCT mixe	?S	80
Fig. (4.32): Calc	rulated CI values of OPC, T	P, DM, TCT mixes	6	80
Fig. (4.33): Calc	culated CI values of OPC, T	P, DM, MCT mixe	S	81

LIST OF TABLES

Table (3.1):	Oxides composition and physical properties of GGBFS	25
Table (3.2):	TCT mixes preparation and design	31
Table (3.3):	MCT mixes preparation and design	31
Table (3.4):	Biological data for HFP4 cells	34
Table (3.5):	Calculated material compositions for 1 m3 of mixes	36

LIST OF NOTATIONS

OP-AAMs : One part alkali-activated materials.

OP-AAS : One Part Alkali-Activated Slag.

GGBFS : Ground Granulated Blast Furnace Slag.

DM : Dry Mixing process.

TCT : Thermo-Chemical Treatment process.

MCT : Microwave Chemical Treatment process.

TCT300 : TCT powder prepared at 300°C.

MCT-10M : MCT powder prepared using microwaving period of 10M.

OP300 : One Part Alkali-Activated Slag mix prepared using TCT300 powder.

OP-10M : One Part Alkali-Activated Slag mix prepared using MCT-10M powder.

XRD : X-Ray Difraction.

SEM : Scanning Electronic Microscope.