

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / حسام الدين محمد مغربي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

ملاحظات: لا يوجد

Cognitive Impairment in Paediatric Onset Multiple Sclerosis and its relation to Thalamic Volume and Cortical Thickness of Temporal Lobe by Magnetic Resonance Imaging

A Thesis

Submitted for partial fulfillment of M.D. degree in Neurology

By

Mona AbdElsalam AbdAllah

Master Degree in Neuropsychiatry, Ain Shams University

Under Supervision of

Prof. Dr. Nahed Salah Eldeen Ahmed

Professor of Neurology Faculty of Medicine, Ain Shams University

Prof. Dr. Ayman Mohammed Ahmed Nassef

Professor of Neurology Faculty of Medicine, Ain Shams University

Prof. Dr. Alaa Eldeen Abdelhamid Mohamed

Professor of Radiology Military Medical Academy

Prof. Dr. Maha Ali Nada

Professor of Neurology Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2022

Acknowledgments

First and foremost, I feel always indebted to Allah, the Most Beneficent and Merciful who gave me the strength to accomplish this work.

My deepest gratitude to my supervisor, **Prof. Dr. Nahed Salah Eldeen Ahmed,** Professor of Neurology, Faculty of Medicine, Ain Shams University, for her valuable guidance and expert supervision, in addition to her great deal of support and encouragement. I really have the honor to complete this work under her supervision.

I would like to express my great and deep appreciation and thanks to **Prof. Dr. Ayman Mohammed Ahmed Nassef,** Professor of Neurology, Faculty of Medicine, Ain Shams University, for his meticulous supervision, and his patience in reviewing and correcting this work.

I must express my deepest thanks to **Prof. Dr. Alaa Eldeen Abdelhamid Mohamed,** Professor of Radiology, Military Medical Academy, for guiding me throughout this work and for granting me much of his time. I greatly appreciate his efforts.

I can't forget to thank with all appreciation **Prof. Dr. Maha Ali Nada,** Assistant Professor of Neurology, Faculty of Medicine, Ain Shams University, whom tirelessly and freely gave comments on various drafts of this piece of work regarding the ozone work.

I would like to thank my teacher, **Prof. Dr. Ahmed Nemr**, Professor of Neurology, Military Medical Academy, for his continuous support, teaching and guiding me and give me the accessibility for collecting the cases of this research.

I cannot forget to thank **Asmaa Nabil**, the clever Psychologist that, assess all our cases regarding by long neuropsychological test. I am appreciating her patience with our patients.

Special thanks to my **Parents,** my **Husband** and all my **Family** members for their continuous encouragement, enduring me and standing by me.

Mona AbdElsalam AbdAllah

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Figures	iv
List of Tables	iii
Introduction	1
Aim of the Work	4
Review of Literature	
Pediatric-Onset Multiple Sclerosis (POMS)	5
Cognitive Impairment in POMS	27
Brain Imaging and Voulmetry	46
Subjects and Methods	85
Results	90
Discussion	138
Summary	152
Limitations of the study	154
Conclusions	155
Recommendations	156
References	157
Appendices	I
Arabic Summary	—

List of Abbreviations

ADEM : Acute disseminated encephalomyelitis

ADEMON: ADEM associated with optic neuritis

ADHD : Attention deficit hyperactivity disorder

ADS : Acquired demyelinating syndrome

AOMS : Adult-onset multiple sclerosis

APT : Attention Processing Training program

BICAMS: Brief international cognitive assessment for

multiple sclerosis

BMI : Body mass index

BV : Brain volume

CIS : Clinically isolated syndrome

CIS : Clinically isolated syndrome

CNS : Central nervous system

DGM : Deep gray matter

DMTs: Disease modefing therapies

EDSS : Expanded disability status scale

GM : Gray matter

GMF : GM fractional

HLA: Human leukocyte antigen

IPMSSG: International Pediatric MS Study Group

LH : Left hemisphere

MOG : Myelin Oligodendrocyte Glycoprotein

MS : Multiple sclerosis

MTR : Magnetization transfer ratio

NAWM: Normal appearing white matter

NEDA : No evidence of disease activity

NFL : Neurofilament light chain

PET : Positron emission tomography

PiB : Pittsburgh compound B

PIBPET: Positron emission tomography, Pittsburgh compound B

POMS : Pediatric-onset multiple sclerosis

PPMS: Primary progressive MS

PPMS: Primary-progressive multiple sclerosis

RAVLT : Rey auditory verbal learning test

RH : Right hemisphere

RRMS : Relapsing-remitting MS

SCCs : Subjective cognitive concernsSCD : Subjective cognitive decline

SD : Standard deviationSDGM : Subcortical deep GM

SDMT : Symbol Digit Modalities Test

SES : Socioeconomic status

SNPs : Single nucleotide polymorphisms

SPART : Spatial Recall Test

SPART-D: Spatial Recall Test Delayed

TMT: Trail Making Test

WMWhite matterWMFWM fractional

3D : Three dimensional

List of Figures

Figure No.	<u>Title</u>	Page No.
Figure (13):	Statistically significant ne correlation between age "years Non-verbal IQ.Error! Bookmark	" with
Figure (2):	Magnetic Resonance Imagin Multiple Sclerosis standardized MRI protocol to evaluate p wheneverMultiple sclerosis is cli suspected	brain atients nically
Figure (3):	Shape differences between m sclerosis patients and healthy contra	-
Figure (4):	Cortical thickness borders overlaid anatomical T1-weighted Freesurfer	
Figure (5):	Example of Brainsuite processing st volumetric assessment	1
Figure (6):	Example of brain cortical and subclabeling using Freesurfer	
Figure (7):	Cortical thickness map (BrainVoyag cross-platform software)	
Figure (8):	Mechanisms of late axonal loss. Mo and cellular mechanisms of neurodegeneration and atrophy	driving
Figure (9):	Cortical thickness measurements	79
Figure (10):	Comparison between control groum MS group according to age "years"	•

Figure (11):	Comparison between control groups and MS group according to sex
Figure (12):	Comparison between control groups and MS group according to temporal lobe cortex thickness (left side)
Figure (13):	Comparison between control groups and MS group according to temporal lobe cortex thickness (right side)
Figure (14):	Comparison between control groups and MS group according to relative thalamus volume
Figure (15):	Bar chart Full scale IQ, Non-verbal IQ and Verbal IQ distribution among MS group
Figure (16):	Statistically significant positive correlation between superior tempoeral thickness "left" with Non- verbal: verbal-fluid reasoning
Figure (17):	Statistically significant positive correlation between superior tempoeral thickness "left" with Non- verbal: knowledge
Figure (18):	Statistically significant negative correlation between superior tempoeral thickness "left" with Non-verbal: visual spatial processing
Figure (19):	Statistically significant positive correlation between superior tempoeral thickness "left" with Verbal: Quantitative reasoning

Figure (20):	Statistically significant positive correlation between superior tempoeral thickness "left" with Verbal: visual spatial processing
Figure (21):	Statistically significant positive correlation between middle temporal thickness "left" with Verbal: quantitative reasoning
Figure (22):	Statistically significant positive correlation between middle temporal thickness "left" with Verbal: visual spatial processing
Figure (23): S	tatistically significant positive correlation between inferior temporal thickness "left" with Verbal: quantitative reasoning
Figure (24):	Statistically significant negative correlation between fusiform thickness "left" with Non Verbal: working memory
Figure (25):	Statistically significant positive correlation between fusiform thickness "left" with
Figure (26):	Statistically significant positive correlation between parahippocampal thickness "left" with Non-Verbal: verbal-fluid reasoning
Figure (27):	Statistically significant positive correlation between parahippocampal thickness "left" with Verbal: quantitative reasoning

Figure (28):	Statistically significant positive correlation between parahippocampal thickness "left" with Verbal: visual spatial processing
Figure (29):	Statistically significant positive correlation between parahippocampal thickness "left" with Verbal: verbal-fluid reasoning
Figure (30):	Statistically significant positive correlation between average of temporal lobe cortex thickness "left" with Verbal: quantitative reasoning
Figure (31):	Statistically significant positive correlation between average of temporal lobe cortex thickness "left" with Verbal: visual spatial processing
Figure (32):	Statistically significant positive correlation between superior temporal thickness "left" with full scale IQ
Figure (33):	Statistically significant positive correlation between superior temporal thickness "left" with full Verbal IQ
Figure (34):	Statistically significant positive correlation between Middle temporal thickness "left" with Verbal IQ
Figure (35):	Statistically significant positive correlation between inferior temporal thickness "left" with full scale IQ
Figure (36):	Statistically significant positive correlation between inferior temporal thickness "left" with verbal IQ

Figure (37):	Statistically significant positive correlation between parahippocampal thickness "left" with full scale IQ
Figure (38):	Statistically significant positive correlation between parahippocampal thickness "left" with Non verbal IQ
Figure (39):	Statistically significant positive correlation between parahippocampal thickness "left" with verbal IQ
Figure (40):	Statistically significant positive correlation between average of temporal lobe cortex thickness "left" with full-scale IQ
Figure (41):	Statistically significant positive correlation between average of temporal lobe cortex thickness "left" with Non verbal IQ
Figure (42):	Statistically significant positive correlation between average of temporal lobe cortex thickness "left" with verbal IQ
Figure (43):	Statistically significant positive correlation between inferior temporal thickness "left" with verbal: knowledge
Figure (44):	Statistically significant positive correlation between entorhinal thickness "right" with verbal: knowledge
Figure (45):	Statistically significant positive correlation between parahippocampal thickness "right" with non-verbal: verbal-fluid reasoning

Figure (46):	Statistically significant positive correlation between superior temporal thickness "right" with Full scale IQ 123
Figure (47):	Statistically significant positive correlation between parahippocampal thickness "right" with Full scale IQ 123
Figure (48):	Statistically significant positive correlation between parahippocampal thickness "right" with non verbal IQ 123
Figure (49):	Statistically significant positive correlation between parahippocampal thickness "right" with verbal IQ
Figure (50):	Statistically significant positive correlation between average of temporal lobe cortex thickness "right" with full scale IQ
Figure (51):	Statistically significant positive correlation between average of temporal lobe cortex thickness "right" with non-verbal IQ
Figure (52):	Statistically significant positive correlation between average of temporal lobe cortex thickness "right" with verbal IQ
Figure (53):	Statistically significant positive correlation between relative left thalamus volume with superior temporal thickness (left)
Figure (54):	Statistically significant positive correlation between relative left thalamus volume with middle temporal thickness (left)

Figure (55):	Statistically significant positive correlation between relative left thalamus volume with inferior temporal thickness (left)
Figure (56):	Statistically significant positive correlation between relative left thalamus volume with fusiform thickness (left)
Figure (57):	Statistically significant positive correlation between relative left thalamus volume with entorhinal
Figure (58):	Statistically significant positive correlation between relative left thalamus volume with parahippocampal thickness (left)
Figure (59):	Statistically significant positive correlation between relative left thalamus volume with average of temporal lobe cortex thickness (left)
Figure (60):	Statistically significant positive correlation between relative left thalamus volume with superior temporal thickness (right)128
Figure (61):	Statistically significant positive correlation between relative left thalamus volume with fusiform thickness (right)
Figure (62):	Statistically significant positive correlation between relative left thalamus volume with entorhinal thickness (right)
Figure (63):	Statistically significant positive correlation between relative left thalamus volume with average of temporal lobe cortex thickness (right)
	thickness (right)

Figure (64):	Statistically significant positive correlation between relative right thalamus volume with parahippocampal thickness (left)
Figure (65):	Statistically significant positive correlation between relative right thalamus volume with
Figure (66):	Statistically significant positive correlation between relative right thalamus volume with parahippocampal thickness (right)
Figure (67):	Statistically significant positive correlation between relative right thalamus volume with average of temporal lobe cortex thickness (right)
Figure (68):	Statistically significant negative correlation between relative left thalamus volume with non-verbal: visual spatial processing
Figure (69):	Statistically significant positive correlation between relative left thalamus volume with verbal: quantiative processing
Figure (70):	Statistically significant negative correlation between relative right thalamus volume with non- verbal: visual spatial processing
Figure (71):	Statistically significant positive correlation between relative right thalamus volume with verbal: quantitative processing
Fig. (72):	Statistically significant negative correlation between age "years" with Non-verbal IQ