

SERUM MICRORNA-222 EXPRESSION FOR MALIGNANCY PREDICTION IN EUTHYROID PATIENTS WITH INDETERMINATE THYROID NODULE

Thesis

Submitted for Partial Fulfillment of MD Degree
In Internal Medicine

By

Sherihan Abo Elyazed Mohamed Khalil (M.B.B.CH, M.SC)

Supervised by

Prof. Dr. Mohamed Reda Halawa

Professor of Internal Medicine & Endocrinology Faculty of Medicine - Ain Shams University

Prof. Dr. Yara Mohamed Ahmed

Professor of Internal Medicine & Endocrinology Faculty of Medicine - Ain Shams University

Prof. Dr. Maram Mohamed Maher

Professor of Internal medicine & Endocrinology Faculty of Medicine - Ain Shams University

Dr. Salah Hussein Ali

Lecturer of Internal Medicine & Endocrinology Faculty of Medicine - Ain Shams University

Dr. Lamyaa Salem Elsayed Mehriz

Lecturer of Clinical Pathology Faculty of Medicine - Ain shams University

Faculty of Medicine
Ain Shams University
2020

Acknowledgement

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Mohamed Reda Halawa**, for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are to *Prof. Dr. Yara Mohamed Ahmed,* for her sincere efforts & fruitful encouragement.

I am deeply thankful to *Prof. Dr. Maram Mohamed Maher*, for her great help, active participation and guidance.

Really, I can hardly find the words to express my gratitude to **Dr**. Salah Hussein Ali, for his supervision, continuous help, outstanding support & encouragement throughout this work.

I wish to express my great thanks and gratitude to **Dr. Lamyaa** Salem Elsayed Mehriz, lecturer of Clinical Pathology, for her kind supervision, valuable advice and continuous help in this work.

Really I can hardly find the words to express my gratitude to Prof. Dr. Ayman Abd Allah AbdRbho, Professor of General Surgery, and Dr. Shaimaa El Metwaly El Diasty, Lecturer of Radiology, for their efforts, continuous help, encouragement throughout this work.

And thanks to all the help of my mother, my brother, my sister and colleagues, without them this work would not have been completed; to them I dedicate this work.

Sherihan Abo Elyazed

List of Contents

	Title	Page
•	List of Abbreviations	I
•	List of Tables	V
•	List of Figures	VIII
•	Introduction	1
•	Aim of the Work	5
•	Review of Literature	
	- Chapter (1): Thyroid Gland Overview	6
	- Chapter (2): Thyroid nodule	44
	- Chapter (3): Micro RNA	67
•	Subjects and Methods	86
•	Results	110
•	Discussion	131
•	Summary	141
•	Recommendations	144
•	References	145
	Arabic Summary	

18F-FDG-PET F18-fluorodeoxyglucose-PET

ACE American College of Endocrinology

ACR American College of Radiology's

ATA American Thyroid Association

ATCs Anaplastic thyroid carcinomas

ATP Adenosine triphosphate

AUS/FLUS Atypia of Undetermined Significance

/Follicular Lesion of Undetermined

Significance

BIRADS Breast Imaging, Reporting, and Data

System

Ca Calcium

cDNA Complementary Deoxyribonucleic acid

CE-US Contrast-enhanced ultrasound

CISH Chromogenic in situ hybridization

CLL Chronic lymphocytic leukemia

CT Computed tomography

Type I iodothyronine deiodinaseType II iodothyronine deiodinaseType III iodothyronine deiodinase

DIT Diiodotyrosine

DNA Deoxyribonucleic acid **dsRNA** Double-stranded RNA

DTC Well-differentiated thyroid cancer

DWI Diffusion-weighted imaging

ELISA Enzyme-linked immunosorbent assay

FAP Familial adenomatous polyposis

FCD Follicular cell derived

FISH Fluorescence in situ hybridization

FLUS Follicular lesion of undetermined

significance

FN Follicular Neoplasm

FNA Fine needle aspiration

FNAB Fine-needle aspiration biopsy

FNMTC Familial nonmedullary thyroid

carcinoma

FSH Follicle stimulating hormone

FTAs Follicular thyroid adenomas

FTC Follicular thyroid carcinoma

GH Growth hormone

H&E Haematoxylin and Eosin

H2O2 Hydrogen peroxide

IFVPC Invasive follicular variant of papillary

carcinoma

K-TIRADS Korean Society for Thyroid Radiology

MEN Multiple endocrine neoplasia

MEN2 Multiple endocrine neoplasia type 2

MiRNA Micro Ribonucleic acid

MIT Monoiodotyrosine

MRI Magnetic resonance imaging
MRNAs Messenger Ribonucleic acid
MTC Medullary thyroid carcinoma

MTCs Medullary thyroid carcinomas

NADPH Nicotinamide adenine dinucleotide

phosphate

NFVPTC Noninvasive follicular variant of

papillary thyroid carcinoma

NIFTP Non-invasive follicular thyroid

neoplasm with papillary-like nuclear

features

nt Nucleotides

PCR Polymerase chain reaction

PET Positron emission tomography

PGE2 Prostaglandin E2

Pol II RNA polymerase II

Pol III RNA polymerase III

pre-miRNA Precursor miRNA

PRL Prolactin

PTC Papillary thyroid carcinoma

PTH Parathormone

qRT-PCR Quantitative real-time polymerase

chain reaction

RAI Radioactive iodine

RAIU Radioactive iodine uptake

RISC RNA-induced silencing comple
RISC RNA-induced silencing complex

RNA Ribonucleic acid
RNAi RNA interference

RT Reverse Transcription

rT3 Reverse Triiodothyronine

RXRs Retinoic acid X receptors

SFN Suspicious for Follicular Neoplasm

siRNA Small interfering RNA

SPECT Single photon emission computed

tomography

T2 Diiodothyronine

T3 Triiodothyronine

T4 Thyroxine

TBG Thyroxin-binding globulin

Tg Thyroglobulin

TGF-β Transforming growth factor beta

TIRADS Thyroid Imaging, Reporting, and Data

System

TR Thyroid receptor

TREs Thyroid response elements

TRH Thyrotrophin-releasing hormone

TSH Thyroid stimulating hormone

US Ultrasound

List of Tables

Table No.	Title	Page
Table (1):	Some common sources of iodine in adults USA	15
Table (2):	Comparison of the binding of thyroid hormones to carrier proteins	
Table (3):	Familial conditions which are associated with thyroid malignancy and the associated risk of malignancy	48
Table (4):	Features of sonographic examination report	
Table (5):	ACR-TIRADS nodule features and associated points for each characteristic	54
Table (6):	ACR-TIRADS scores	55
Table (7):	Comparison of management recommendations in stratification systems of the ATA	59
Table (8):	Bethesda System for cytologic diagnosis of thyroid nodules	63
Table (9):	The recent preclinical and clinical trials based on miRNA therapeutics.	81
Table (10):	ACR-TIRADS nodule features and associated points for each characteristic	92
Table (11):	ACR-TIRADS scores	92

List of Tables

Table No.	Title	Page
Table (12):	Bethesda System for cytologic diagnosis of thyroid nodules	95
Table (13):	Components of Master mix kit	102
Table (14):	Components of the Reaction Mix in each PCR Reaction	103
Table (15):	The PCR cycling protocol	104
Table (16):	Descriptive Statistics of the studied patients (n=45)	111
Table (17):	Patients according to postoperative histopathology	113
Table (18):	Descriptive data of patients with malignant thyroid carcinoma	114
Table (19):	Comparison between benign and malignant groups as regard expression level of circulating miRNA-222	117
Table (20):	The estimated cutoff value, sensitivity, specificity and accuracy of miRNA-222	118
Table (21):	Comparison between benign and malignant groups as regard age	119
Table (22):	Comparison between benign and malignant groups as regard thyroid profile	120

List of Tables

Table No.	Title	Page
Table (23):	Incidence of different TIRADS score in benign and malignant groups	
Table (24):	Comparison between benign and malignant groups as regard Size of the dominant nodule	122
Table (25):	Comparison between benign and malignant groups as regard diameter of the dominant nodule	
Table (26):	Incidence of BETHESDA categories and 4 in benign and malignant groups	
Table (27):	Correlation of expression level of circulating miRNA-222 and differen parameters in all studied patients	
Table (28):	Comparison between different TIRADS groups according to risk of malignancy	
Table (29):	Comparison between different TIRADS groups according to expression level of circulating miRNA-222	127
Table (30):	Comparison between BETHESDA groups regarding risk of malignancy	y 129
Table (31):	Comparison of both Bethesda categories regarding expression leve of circulating miRNA-222	

List of Figures

Figure No.	Title I	Page
Fig. (1):	Thyroid during development and descent, showing possible sites of ectopic thyroid tissue, thyroglossal cysts and the pyramidal lobe	. 7
Fig. (2):	Thyroid gland anatomy	. 9
Fig. (3):	The thyroid gland with its blood supply and relations	. 10
Fig. (4):	Histology of normal thyroid gland	. 13
Fig. (5):	Chemistry of thyroid hormones	. 14
Fig. (6):	Thyroid hormone synthesis and production	. 19
Fig. (7):	Effects of deiodinase enzymes	. 21
Fig. (8):	Controlling of thyroid hormone secretion by the hypothalamus-hypothyroidism-thyroid axis	. 23
Fig. (9):	Thyroid receptor gene	. 24
Fig. (10):	I ₁₂₃ thyroid uptake and scan example labeled	. 38
Fig. (11):	Multinodular goiter	. 40
Fig. (12):	Classification of human thyroid carcinomas and subtype-specific genetic alterations	. 45
Fig. (13):	TI-RADS classification of thyroid nodules	. 56
Fig. (14):	MicroRNA maturation and function	. 70

List of Figures

Figure No.	Title	Page
Fig. (15):	Nuclear component of microRNA biogenesis	
Fig. (16):	Cytoplasmic component of microRNA biogenesis	
Fig. (17):	Possible mechanisms for miRNA gene regulation	
Fig. (18):	The miRNeasy mini kit spin column extraction procedure	
Fig. (19):	PCR detection system (5 Plex Rotor Gene RealTime PCR Analyzer (Qiagen, Germany)	•
Fig. (20):	Patients according to postoperative histopathology	
Fig. (21):	Comparison between benign and malignant groups as regard expression level of circulating miRNA-222	l g
Fig. (22):	ROC curve for validity of circulating miRNA-222 for prediction or malignant thyroid nodules	f
Fig. (23):	Comparison between benign and malignant groups as regard age	
Fig. (24):	Comparison between benign and malignant groups as regard thyroid profile	l
Fig. (25):	Incidence of different TIRADS scores in benign and malignant groups	

List of Figures

Figure No.	Title	Page
Fig. (26):	Comparison between benign and malignant groups as regard Size of the dominant	122
Fig. (27):	Comparison between benign and malignant groups as regard diameter of the dominant	
Fig. (28):	Incidence of BETHESDA categories 3 and 4 in benign and malignant groups	
Fig. (29):	Comparison between different TIRADS groups according to risk of malignancy	126
Fig. (30):	Comparison between different TIRADS groups according to expression level of circulating miRNA-222	127
Fig. (31):	Comparison between BETHESDA groups according to rate of malignancy	129
Fig. (32):	Comparison of both Bethesda categories regarding expression level of circulating miRNA-222	130

Abstract

Background: The Prevalence of thyroid nodules is rising nowadays, luckily most of them are benign. The risk of malignancy 5-15%, which necessitates the ultimate need to accurately distinguish benign from malignant nodule to avoid unnecessary thyroidectomy with risk of recurrent laryngeal nerve injury, postoperative hypothyroidism and lifetime thyroid replacement therapy, and other complications related to surgery and anaesthesia. Recent evidence suggests that circulating miRNA might have probable advantage as diagnostic or prognostic markers for numerous cancers. Given their reproducible and constant presence in sera, miRNA profiles have emerged as a non-invasive method to categorise a wide variety of human cancers.

Aim of the study: To evaluate a possible relationship between the expression level of circulating miRNA-222 and the histological outcome of euthyroid patients undergoing thyroidectomy for thyroid nodules with indeterminate FNAB cytology.

Subjects and Methods: 45 euthyroid patients with inderteminate thyroid nodules diagnosed with ultrasound and FNAC which planed for thyroidectomy. Quantitative assay of serum micro RNA-222 expression by quantitative Real-Time polymerase chain reaction (qRT-PCR) performed preoperatively, and results compared with postoperative histopathology.

Results: The incidence of thyroid nodules was predominant in female gender in benign group and malignant group. Risk of malignancy increases as TI-RADS and Bethesda scores increases. Also, larger nodule in size has a more risk of malignancy (p= 0.027). Expression level of circulating miRNA-222 in serum can't differentiate between benign and malignant patients where there was no significant difference between them statistically (p=0.905). Circulating miRNA-222 was a poor predicator for malignant nodules with sensitivity of 50%, specificity of 32.43%, with high negative predictive value (NPV=75%).

Conclusion: Although circulating miRNA-222 has been identified as novel minimally invasive biomarker for preoperative prediction of malignant nodules, but in our study, it did not show a value as a tool for discrimination of malignant nodules. Ultrasound remained important procedure in preoperative prediction and management of thyroid nodules especially when correlating to nodule size which had positive correlation with malignancy in our study.

Key words: Thyroid nodules, microRNA-222, FNAC, Bethesda, TI-RADS

INTRODUCTION

Thyroid cancer is the most common endocrine neoplasms, which accounts for approximately 1.7% of all cancer diagnoses (*Ferlay et al.*, 2010). However, most thyroid nodules are benign and only 5% harbor malignancy (*Gharib*, 2004). Therefore, it is essential to develop safe and accurate test to differentiate between benign nodules and malignant ones (*Dean and Gharib*, 2008).

Currently, the most important diagnostic method in the detection of thyroid cancer is fine-needle aspiration biopsy (FNAB). Nevertheless, up to 16.6–22.5% of the detections cannot be diagnosed definitely, owing to wrong diagnosis or sampling errors (*Papini et al.*, 2002).

Cibas and Ali published in 2009 the Bethesda Uniform System for Reporting Thyroid Cytopathology. Six different categories were described: nondiagnostic, benign, malignant, atypia/follicular lesion of undetermined significance (FLUS), follicular neoplasm, and suspicious for malignancy. Whereas the first three categories are straight forward to manage, it is the last three categories that pose a management challenge. Biopsy results that include FLUS, follicular neoplasm, and suspicious for malignancy carry a malignancy rate of 5%-15%, 15%-30%, and 60%-75% respectively. The recommended approach for indeterminate FNAB results varies between repeat FNAB,