

Study of serum Micro-RNA 221 Expression in Patients with Thyroid Nodules and Its Relation to Outcome

Thesis

Submitted for the Partial Fulfillment of M.D. Degree in *Internal Medicine*

By

Sherief Samy Bayomy Mohamed

M.B.B.Ch, M.SC-Faculty of Medicine-Ain Shams University

Supervised by

Prof. Dr./ Raef Malak Botros

Professor of Internal Medicine and Endocrinology Faculty of Medicine - Ain-Shams University

Prof. Dr./ Emad Eldin Farid Ibrahim

Professor of General Surgery Faculty of Medicine, Ain Shams University

Dr./ Alyaa Ahmed ElSherbini

Associate Professor of Internal Medicine and Endocrinology Faculty of Medicine, Ain Shams University

Dr./ Shaimaa El-Metwaly ElDayasty

Lecturer of Radiology
Faculty of Medicine, Ain Shams University

Dr. Hanan Mahmoud Ali

Lecturer of Internal Medicine and Endocrinology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2020

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to Prof. Dr. Raef Malak Botros, Professor of Internal Medicine and Endocrinology for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Prof. Dr. Emad el din Farid, Professor of General surgery, Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Alyaa Ahmed Elsherbiny**, Assistant Professor of internal medicine and endocrine, Faculty of Medicine, Ain Shams University, for her great help, active participation and guidance.

Special thanks are due to Dr. Shaimaa El-Metwaly ElDayasty, Lecturer of Radiology, Faculty of Medicine Ain Shams University, for her sincere efforts, fruitful encouragement.

Special thanks are due to Dr. Hanan Mahmoud Ali, Lecturer of Internal Medicine and Endocrinology, Faculty of Medicine Ain Shams University, for her sincere efforts, fruitful encouragement.

I wish to introduce my deep respect and thanks to **Prof. Dr. Lamiaa Salem**, Consultant of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her kindness, supervision and cooperation in this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Sherief Samy Bayomy

List of Contents

٦	Title Page No.
List of Tables	I
List of Figures	III
List of Abbreviations	V
Review of Literature	
Introduction	1
Aim of the Work	4
• CHAPTER 1: Thyroid Nodules and Maliga	nancy5
Chapter 2: Thyroid Ultrasound	50
• Chapter 3: Microrna In Thyroid Nodules	s66
Patients and Methods	88
Results	113
Discussion	129
Summary and Conclusion	137
References	138
Arabic Summary	1

List of Tables

Table No.	Title	Page No.
Table (1):	Risk factors for development of thyroid	nodules 7
Table (2):	Clinical features that increase the possib malignant versus a benign thyroid nodule.	
Table (3):	The Bethesda System for Reporting Cytopathology: diagnostic categories	•
Table (4):	The betheseda system for reporting cytopathology: Diagnostic Categories an malignancy	nd risk of
Table (5):	Survival rates for different types of cancers	
Table (6):	Comparison of miRNA and siRNA or function	
Table (7):	Studies of miRNA in papillary thyroid car	rcinomas 75
Table (8):	miRNA expression in thyroid tumors of papillary carcinoma	
Table (9):	A master mix was prepared accommanufacturer's instruction as illustrated	
Table (10):	The thermal cycler values	107
Table (11):	Components of the Reaction Mix in ea	
Table (12):	The PCR cycling protocol	109
Table (13):	Showing distribution of group 1 and gr regard age, sex, thyroid functions an Rna 221	d micro-
Table (14):	Descriptive for Nodule size, TIRAD Bethesda classification system, pathology 1	in group
Table (15):	Age in group 1 and group 2:	116
Table (16):	Showing range of age in both ben malignant pathologies	ign and
Table (17 a,b,c):	Showing comparisons regarding stimulating hormone, free t3 and free t4 groups:	4 in both

List of Tables (cont...)

Table No.	Title	Page No.
Table (18 a,b,c):	Showing comparisons regarding stimulating hormone, free t3 and subgroups 1A and 1b	free t4 in
Table (19):	Showing distribution of malignant a pathologies with different TIRADS va	_
Table (20):	Showing distribution of malignant a pathologies with different sizes of nodules.	dominant
Table (21):	Showing distribution of malignant a pathologies with different Bethesda va	_
Table (22):	MicroRna 221 in sera of both groups	124
Table (23):	Showing range of microRna 221 in band malignant pathologies:	_
Table (24):	ROC curve between Pathology Bo Malignant in Patients:	_
Table (25):	Summary for different correlations wand malignant outcomes and controls	ith benign

List of Figures

Fig. No.	Title Page No.
Figure (1):	An algorithm for evaluation of a thyroid nodule17
Figure (2):	Algorithm for evaluation and management of patients with thyroid nodules based on US
E: (a):	pattern and FNA cytology
Figure (3):	Normal thyroid ultrasound in transverse view51
Figure (4):	A predominantly cystic nodule53
Figure (5):	An entirely cystic nodule with comet-tail artifact
	(arrow)
Figure (6):	Hypoechoic solid nodule with both micro and macrocalcifications
Figure (7):	Smooth margin58
Figure (8):	Ill defined margin58
Figure (9):	Irregular margin58
Figure (10):	Lobulated margin58
Figure (11):	Microcalcifications within thyroid nodule59
Figure (12):	miRNA regulation of gene expression through the
	RNAi pathway67
Figure (13):	Translational repression and inhibition of protein
	synthesis
Figure (14):	Putative role of suppressor miRNAs and oncogene miRNAs in carcinogenesis72
Figure (15):	LOGIQ™ P7, GE Healthcare, Innovative
	ultrasound imaging inc.202091
Figure (16):	Representative images of TIRADS scoring in different thyroid nodules94
Figure (17):	Papillary thyroid cancer hematoxylin and eosin97
Figure (18):	The miRNeasy mini kit spin column extraction
-	procedure104

List of Figures (cont...)

Fig. No.	Title	Page No.
Figure (19):	PCR detection system (5 Plex	Rotor Gene
	RealTime PCR Analyzer (Qiagen, Ger	many)109
Figure (20):	Showing range of age in both	benign and
	malignant pathologies	117
Figure (21):	Showing distribution of malignant	and benign
	pathologies with different TIRADS va	lues120
Figure (22):	Showing distribution of malignant	and benign
	pathologies with different TIRADS va	lues121
Figure (23):	Showing distribution of malignant	and benign
	pathologies with different sizes of	
	nodules	122
Figure (24):	Showing distribution of malignant	and benign
	pathologies with different Bethesda va	alues123
Figure (25):	Showing range of microRna 221 in	both benign
	and malignant pathologies	125
Figure (26):	ROC curve between Pathology	Benign and
	Malignant in Patients	126
Figure (27):	microRna 221 in different groups	
	malignant and controls	128

List of Abbreviations

Abb.	Full term
99TC	Thyroid radioactive technetium-99m scan
ACR	American College of Radiology ACR
ATA	American thyroid association
ATC	Anaplastic thyroid cancer
AUS/FLUS	Atypia of uncertain significance/follicular lesion of undetermined significance
CEA	Carcinoembryonic antigen
DTC	Differentiated thyroid cancer
<i>EDTA</i>	Ethylene diamine tetra-acetate
<i>FA</i>	Follicular adenoma
FC	Follicular carcinoma
FN	Follicular neoplasm/suspicious for follicular neoplasm
FNA	Fine needle aspiration
<i>FTC</i>	Follicular thyroid carcinoma
<i>GEC</i>	Gene expression classifier
<i>Gy</i>	Gray unit of absorped radiation dose
<i>IQR</i>	Inter-quartile range
<i>MEN</i>	Muliple endocrine neoplasia
miR	micro-Rna
miRNA	micro rna
<i>MTC</i>	Medullary thyroid carcinoma
PC	Papillary carcinoma
PDC	Poorly differentiated carcinoma

List of Abbreviations (cont...)

|--|

PDC	Poorly differentiated carcinoma
PET	Positron emission tomography
PTC	Papillary thyroid carcinoma
Rad	Unit of absorped radiation dose
RISC	RNA-induced silencing complex
<i>RLN</i>	Recurrent laryngeal nerve
RT	Reverse Transcription
siRNA	Short interfering RNA
<i>SMC</i>	Suspicious for malignant cells
TBSRTC	The Bethesda System for Reporting Thyroid Cytopathology
<i>Tg</i>	Thyroglobulin
TIRADS	Thyroid Imaging, Reporting and Data System
<i>Us</i>	Ultrasound
UTR	. Untranslated region

Abstract

A major dilemma in the diagnostic management of thyroid nodules is to determine whether it is a benign or malignant lesion and hence to determine decision for surgery. The majority of individuals with thyroid nodules are asymptomatic. The current first line of evaluation of thyroid nodules encompasses thyroid hormone laboratory tests, and ultrasonography of the thyroid gland, fine-needle aspiration (FNA) biopsy is often used to rule out cancer in thyroid nodules ,in 20-30 % of cases, however, FNAB yields indeterminate cytological results and suspicious for malignancy. Surgery was classically recommended for such indeterminate nodules for their risk of malignancy, which, overall, is about 25 % when confirmed histopathologically upon thyroidectomy. As a result, about 75 % of patients with cytologically indeterminate thyroid nodules would undergo unnecessary thyroid surgeries for nodules that prove to be benign only after surgery. Recent advances in research on thyroid carcinogenesis have yielded applications of diagnostic molecular biomarkers and profiling panels in the management of thyroid nodules. Among these markers are MicroRNAs (miRs) are small RNA sequences (19–25 nucleotides) that function to regulate the expression of genes. In this paper we aim to detect a possible of Micro-RNA 221 expression in sera of Patients With thyroid nodules and its relation to outcome after surgery.

Introduction

Thyroid nodules are extremely common and are mostly benign. Only 4%-6.5% of all thyroid nodules are cancerous (*Lin et al.*, 2005).

The majority of individuals with thyroid nodules are asymptomatic. The nodules are usually found during routine physical examination with some incidental findings seen on diagnostic imaging (e.g., ultrasound [US], computed tomography, magnetic resonance imaging, or positron emission tomography) performed for other indications (*Mendel et al.*, 2004).

Rarely, patients with thyroid nodules may complain of pain in the neck, jaw, or ear. If a nodule is large enough to compress the trachea or esophagus, it may cause difficulty with breathing, swallowing. Even less commonly, hoarseness can be caused if the nodule invades the recurrent laryngeal nerve that controls the vocal folds but this is usually related to thyroid cancer (*Knudsen et al., 2012*).

The current first line of evaluation of thyroid nodules encompasses thyroid hormone and thyroid-stimulating hormone laboratory tests, and ultrasonography of the thyroid gland (*Khadra et al.*, 2014).

1

Ultrasonography is noninvasive and reveals many features relevant to the pathology of nodules. For example, an increased risk of malignancy has been associated with the presence of microcalcifications, irregular or speculated margins halo, marked hypoechogenicity, mostly solid composition, and taller than wider shape (Moon et al., 2010).

On the other hand, presence of peripheral vascularity, round shape, isoechogenicity, spongiform appearance, smooth cystic composition and associated are benignancy (Moon et al., 2008).

As such, fine-needle aspiration (FNA) biopsy is often used to rule out cancer in thyroid nodules (Haugen et al., 2016).

Although FNA is a safe and widely used procedure, complications such as discomfort or local pain and self-limited small hematomas may occur. Approximately 60% - 80% of FNAs result in benign findings (Cibas et al., 2016).

In 20–30 % of cases, however, FNAB yields indeterminate cytological results and suspicious for malignancy. Surgery was classically recommended for such indeterminate nodules for their risk of malignancy, which, overall, is about 25 % when confirmed histopathologically upon thyroidectomy. As a result, about 75 % of patients with cytologically indeterminate thyroid nodules would undergo unnecessary thyroid surgeries for nodules that prove to be benign only after surgery (Alexander et al., 2015).

This historically represents a major dilemma in the diagnostic management of thyroid nodules, to which other conventional diagnostic modalities, such as ultrasonography, are also unable to provide definitive solution (Haugen et al., 2015).

Recent advances in research on thyroid carcinogenesis have yielded applications of diagnostic molecular biomarkers and profiling panels in the management of thyroid nodules. The specific utility of these novel, clinically available molecular tests is becoming widely appreciated, especially in perioperative decision making by the surgeon regarding the need for surgery and the extent of initial resection (Robert et al., 2014).

Among these markers are MicroRNAs (miRs) are small RNA sequences (19–25 nucleotides) that function to regulate the expression of genes. MiRNAs have been shown to play a key role in the regulation of gene expression and there is evidence that they are involved in a wide variety of physiological cellular processes including differentiation, proliferation, and apoptosis (Hatfield et al., 2005).

AIM OF THE **W**ORK

To detect value of Micro-RNA 221 expression in sera of Patients With thyroid nodules and its relation to outcome after surgery.