

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Wear of Different CAD/CAM Ceramic Materials with Various Surface Finishing Protocols

(In vitro Study)

Thesis submitted to the Faculty of Dentistry Ainshams University

For

Partial Fulfillment of the Requirements of Doctorate degree in Fixed Prosthodontics

By:

Hesham Samir Saad Sabet

B.D.Sc, Ainshams University-2007

M.D.Sc, Ainshams University-2015

2022

Supervisors:

Prof.Dr. Tarek Salah Morsi

Professor of Fixed Prosthodontics, Faculty of Dentistry, Ain Shams University

Prof.Dr. Ashraf Hussein Sherif

Professor of Fixed Prosthodontics, Faculty of Oral and Dental medicine, Future University in Egypt

Dr. Ahmed Ezzat Sabet

Associate professor of Fixed Prosthodontics, Faculty of Dentistry, Ain Shams University

Faculty of Dentistry
Ainshams University
2022

بسم الله الرحمن الرحيم

{وَقُل رَّبِّ زِدْنِي عِلْمًا}

حدق الله العظيم سورة طه (آية 114)

Acknowledgement

First of all, I'd like to thank GOD, for all his blessings I receive on daily basis, & for giving me the strength to keep going and never give up.

I would like to express my deepest gratitude to my Supervisor and Mentor Prof. Dr. Tarek Salah Morsi Professor of fixed Prosthodontics, Faculty of Dentistry, Ainshams University, who guided me not only throughout this research but also throughout my whole career as he has always been my role model. I would also like to thank him for his patience, sincere motivation, and his profound belief in me, & for providing me with the essential aspects of scientific thinking which played a major role in getting through this study.

I would like to show my true appreciation for our great professor and father figure **Prof. Dr.Ashraf Hussein Sherif** Professor of Fixed Prosthodontics and Vice dean, Faculty of Oral and Dental Medicine Future

University in Egypt. He has always been a great support. I gratefully acknowledge his guidance, he always provided me with his insightful comments and suggestions that served as a main contributor to the completion of this research.

I would also like to extend my sincere thanks to my thoughtful supervisor and elder brother Assoc. Prof. Dr. Ahmed Ezzat Sabet, Associate Professor of Fixed Prosthodontics, Faculty of Dentistry, Ainshams University. His kindness, valuable advice, help and effort, can never be underestimated. His constant belief that I would finish this work gave me unwavering support to get my task done the best way possible.

Last but not least, deepest thanks to my dear professors, colleagues and staff members of Fixed Prosthodontics Department, Faculty of Oral and dental medicine, Future University in Egypt for their great encouragement and sincere support.

Dedication

I would like to dedicate this work to

My Beautiful Family
My Parents, My Sister
The Soul of my beloved
Grandmother

&

My dear friends

Content

List of Figures	ii
List of Tables	v
List of Abbreviations	vi
Introduction	<i>I</i>
Review of literature	3
Statement of the problem	35
Aim of the Study	36
Materials and Methods	37
Results	66
Discussion	106
Summary	123
Conclusions	126
References	127
Arabic Summary	

List of Figures

Figure (1): KATANA (UTML) blanks	38
Figure (2): KATANA (ML) blanks	40
Figure (3): Celtra TM Duo Blocks	41
Figure (4): CERABIEN TM ZR FC Paste Stain (Clear Glaze)	42
Figure (5): DENTSPLY universal overglaze (high flu)	42
Figure (6): DIACERA kit for polishing zirconia and alumina	43
Figure (7): DIAPRO kit for polishing lithium silicates	43
Figure (8): Low-speed cutting saw (Isomet 4000)	46
Figure (9): Zirconia blanks sectioned using a low-speed cutting saw under water	irrigation
	47
Figure (10): Zirconia blank sectioned into a series of blocks	47
Figure (11): Block fixed to an attatchment to be cut further into smaller blocks	48
Figure (12): Final block secured to the attatchment	48
Figure (13): Zirconia block is cut into slices	49
Figure (14): Slices positioned into the refractory sagger tray filled with the sintering	g alumina
beads	49
Figure (15): Celtra DUO block is cut into slices.	51
Figure (16): Verification of the specimens dimensions by digital caliper	52
Figure (17): Specimens glazed with CERABIEN™ ZR FC Paste Stain	55
Figure (18): Specimens glazed with DENTSPLY universal overglaze	56
Figure (19): 3-shape Trios 3 Scanner	57
Figure (20): Angle measurement of the selected premolar cusps	58
Figure (21): Width of the selected premolar cusps	58
Figure (22): Premolar cut by Isomet under coolant	59
Figure (23): Premolar Sectioned longitudinally to two halves	59
Figure (24): Digital microscope with a built in camera	60
Figure (25): ROBOTA chewing simulator	61
Figure (26): Chuck holding the sectioned premolar	62
Figure (27): Teflon mold holding the ceramic specimen	62
Figure (28): Teflon mold holding the control enamel specimen.	62

Figure (29): 3D diagram of the chewing simulator chamber
Figure (30): X-ray diffractometer
Figure (31): Field emission Scanning electron microscope
Figure (32): Box plot representing median and range values for volume loss in different
groups
Figure (33): Box plot representing median and range values for Δ Ra in different groups76
Figure (34): Scatter diagram representing inverse correlation between volume loss and Δ
RMS
Figure (35): SEM micrograph of CZP at 50x magnification showing wear scar79
Figure (36): SEM micrograph of CZP at 1.5kx magnification showing surface crack79
Figure (37): SEM micrograph of CZP at 4kx magnification showing partial spallation of
zirconia surface
Figure (38): SEM micrograph of CZG at 30x magnification showing wear scar80
Figure (39): SEM micrograph of CZG at 1.0kx magnification showing alternating smooth and
rough areas81
Figure (40): SEM micrograph of CZG at 1.5kx magnification showing total spallation of glaze
particle81
Figure (41):. SEM micrograph of CZG at 3kx magnification showing spallation pores82
Figure (42): SEM micrograph of CZG at 4kx magnification showing surface cracks and
delamination82
Figure (43): SEM micrograph of CZPG at 50x magnification showing wear scar83
Figure (44): SEM micrograph of CZPG at 1.0kx magnification showing rough and smoth
areas84
Figure (45): SEM micrograph of CZPG at 4kx magnification showing spallations and holes
in surface84
Figure (46): SEM micrograph of TZP at 50x magnification showing wear scar85
Figure (47):. SEM micrograph of TZP at 1.5kx magnification showing crack lines86
Figure (48): SEM micrograph of TZP at 4kx magnification showing wear scar86
Figure (49): SEM micrograph of TZG at 50x magnification showing wear scar87
Figure (50): SEM micrograph of TZG at 1.0kx magnification showing smooth and rough
areas
Figure (51): SEM micrograph of TZG at 3kx magnification showing spallations and crack
lines