

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سامية زكى يوسف

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

Effects of Ivabradine on Neopterin and NT-Pro BNP in Patients with Congestive Heart Failure

Thesis

Submitted for Master's degree (M.Sc.) in Pharmaceutical Science (Clinical Pharmacy)

By

Jayda Maher Ahmed Dogheim

Bachelor of Pharmaceutical Sciences Alexandria University

Supervisors

Prof. Gamal Abdelhai Omran.

Professor of Biochemistry and Dean of Faculty of Pharmacy – Damanhour University.

Prof. Sahar Mohamed El-Haggar

Professor Of Clinical Pharmacy and Vice Dean For Community Service and Environmental Affairs -Faculty Of Pharmacy – Tanta University.

Dr. Rehab Hussein Werida

Associate Professor of Clinical Pharmacy and Pharmacy Practice-Faculty of Pharmacy – Damanhour University.

Dr. Ibtsam Khairat Abdelhaia

Associate Professor of Cardiology -Faculty of Medicine - Tanta University

Clinical Pharmacy and Pharmacy Practice Department
Faculty of Pharmacy
Damanhour University
2022

Acknowledgment

First of all, I would like to express my intense gratitude to **ALLAH** for guiding my steps and his countless blessings. The completion of my thesis took me a long journey of trial and error, patience and persistence. I would like to take this as an opportunity to thank my committee of supervisors who helped and guided me throughout the whole journey. I am very grateful for their supervision and I owe them my greatest appreciation.

I would like to show my gratitude to **Prof. Dr. Gamal Omran**, Professor of Biochemistry and Dean of Faculty of Pharmacy, Damanhour University. An inquisitive, supportive and experienced role model whose vision has enlightened me throughout the way. It is my honour to continue this work under your supervision.

I would also like to express how lucky I am to be under the supervision of **Prof. Dr. Sahar El-Haggar**, Professor of Clinical Pharmacy, Tanta University. A well experienced model in the field of clinical pharmacy whose continuing guidance have led to success of my research. Her valuable comments were critical in improving this thesis greatly.

I would like to express how fortunate I am to have **Dr. Rehab Werida**, Associate Professor of Clinical Pharmacy, Damanhour University as my supervisor. A hardworking, helpful and supportive person. Thank you for giving me the time and attention during the whole period of my master's degree.

I am greatly thankful to **Dr. Ibtesam Khairat Abdelhai**, Associate Professor of Cardiology of Faculty of Medicine, Tanta University. For her to dedicate so much time to help and facilitate the success of this research. Moreover, for providing important tips throughout the whole process.

I would love to express my gratitude and sentiments to my **family**. To my Mother, always being there for me, supporting me in every step, and trying to figure out the way for each obstacle that faces me during my research. To my Father, Professor of Anaesthesiology, Faculty of Medicine, Alexandria University, who was with me in every step, helping me with every part of my research, being supportive and offering valuable tips. To my brother who tried his best to cheer my up when things weren't working out and for reminding me how good and successful I am that I can achieve almost anything. I am well aware that I will forever be indebted to all of you and no matter what I do, I won't be able to pay you back for everything that you have done to me.

List of Abbreviations

ACEIs: Angiotensin Converting Enzyme Inhibitors

ADH: Anti-Diuretic Hormone

AF: Atrial Fibrillation

AHA: American Heart Association

ALT: Alanine Transaminase

ANP: Atrial Natriuretic Peptide

ARB: Angiotensin Receptor Blocker

ARBs: Angiotensin Receptor Blockers

ARNI: Angiotensin receptor blocker/Neprilysin Inhibitors

AST: Aspartate Transaminase

BNP: Brain Natriuretic Peptide

BUN: Blood Urea Nitrogen

CHF: Congestive Heart Failure

CKD: Chronic Kidney Disease

CNP: C-type Natriuretic Peptide

CNS: Central Nervous System

CO: Cardiac Output

COPD: Chronic Obstructive Pulmonary Disease

CRP: C-Reactive Protein

EF: Ejection Fraction

ECG: Electro-Cardiogram

ESC: European Society of Cardiology

HF: Heart Failure

HFpEF: Heart Failure preserved Ejection Fraction

List of Abbreviations

HFrEF: Heart Failure reduced Ejection Fraction

H-ISDN: Hydralazine Isosorbide Dinitrate

HR: Heart Rate

I_f: Funny Current

Ih: hyperpolarization-activated current

IHD: Ischemic Heart Disease

LVEDP: Left Ventricular End Diastolic Pressure

LVEDV: : Left Ventricular End Diastolic Volume

MAP: Mean Arterial Pressure

MRA: Mineralocorticosteroid Antagonist

NP: Natriuretic Peptide

NSAIDs: Non-steroidal Anti-inflammatory

NT-Pro BNP: N-Terminal pro Brain Natriuretic Peptide

NYHA: New York Heart Association

OD: Optical Density

RAAS: Renin Angiotensin Aldosterone System

SAN: Sino Atrial Node

Scr: Serum Creatinine

SGLT-2: Sodium-Glucose Co-transporter 2

SNS: Sympathetic Nervous System

TPR: Total Peripheral Resistance

Declarations

I declare that no part of this work had been submitted for another degree or qualification in any university or other institution of learning.

Name: Jayda Maher Ahmed Dogheim

Signature:

Table of Contents

Table of Contents:

List	t of Tables	VIII
List	t of Figures	IX
Ab	stract	X
1.	Introduction	1
2.	Review of literature	3
2	2.1 Definition and classification:	3
2	2.2 Pathophysiology of heart failure:	3
2	2.3 Diagnosis of heart failure:	6
2	2.4 Cardiac biomarkers in heart failure:	8
	2.4.1 Brain naturitic peptide:	8
	2.4.1 Neopterin (NP)	10
2	2.5 Management of heart failure:	12
	2.5.1 Non-pharmacological treatment	12
	2.5.2 Pharmacological therapy	13
	2.5.2.1 Diuretics	13
	2.5.2.2 Angiotensin converting enzyme inhibitors (ACEIs)	15
	2.5.2.3 Angiotensin receptor blocker/neprilysin inhibitor (ARNI)	17
	2.5.2.4 Sodium-glucose co-transporter 2 inhibitors (SGLT2 inhibitors)	17
	2.5.2.5 Angiotensin receptor blockers (ARBs)	18
	2.5.2.6 Beta-blockers	18
	2.5.2.7 Mineralocorticoid antagonists (spironolactone)	19
	2.5.2.8 Digoxin	19
	2.5.2.9 Hydralazine-Isosorbide dinitrate (H-ISDN)	20
	2.5.2.10. Other interventions	20
2	2.6 Ivabradine in management of heart failure:	21
	2.6.1 Structure and activity	21
	2.6.2 Pharmacokinetics and pharmacodynamics	21
	2.6.3 Efficacy of ivabradine	22
	2.6.4 Beta blocker versus ivabradine	22
	2.6.5 Dosing and dose modifications	23
3.	Materials and Methods	24

3.1 Subjects and experimental design:	24
3.1.1 Study design	24
3.1.2 Patients:	24
3.2 Drugs	25
3.3 Chemicals and instruments	25
3.4 Clinical examination	26
3.5 Follow up, adherence and patient safety	26
3.5.1 Follow up	26
3.5.2 Adherence	26
3.5.3 Patient safety:	27
3.6 Sample collection	27
3.7 Parameters measured	27
3.7.1 BMI determination	27
3.7.2 New York Heart Association (NYHA) Classification	28
3.7.3 Lipid profile measurement	28
3.7.4 Determination of serum NT-Pro BNP	31
3.7.5 Determination of serum neopterin	35
3.8 Study Outcomes	39
3.8.1 Primary outcomes	39
3.8.2 Secondary outcomes	39
3.9 Statistical analysis	39
4.0 Reference range of study parameters	40
4. Results	41
4.1 Subjects' selection, randomization and follow up	41
4.2 Baseline characteristics of included patients	41
4.3 Effects of ivabradine on NYHA classification, HR, and EF	43
4.4 Effects of ivabradine on kidney functions	44
4.5 Effects of ivabradine on lipid profile	44
4.6 Effects of ivabradine on NT-Pro BNP and neopterin biomarkers	44
4.7 Correlation between NT-Pro BNP and neopterin biomarkers with in both groups	
4.8 Area under ROC curve of both biomarkers of the studied group	s47
4.9 Reported adverse events in ivabradine group and non-ivabradi	ne group47
5. Discussion	52

	5.1 Study outcomes	57
	5.2 Study Limitations	57
Sι	mmary	
	References	
	pendix	
	Appendix 1: Baseline demographics and medical history of included patients	
	Appendix 2: Medication history of included patients	
	Appendix 3: Ejection Fraction, NYHA class, heart rate, Kidney functions before and after intervention	
	Appendix 4: Lipid Profile before and after intervention	84
	Appendix 5: Cardiac Biomarkers levels before and after intervention	88
Pr	otocol	90
	الملخص العر	1
٠.	<i>y</i>	

List of Tables

Table 1: Modified framingham criteria	7	
Table 2: Heart failure classification according to ACCF/AHA and NYHA functional classification		
	14	
Table 3: Dose adjustments in adults based on heart rate	23	
Table 4: NYHA classification	28	
Table 5: Reference range of measured parameters	40	
Table 6: Baseline characteristics of included patients	43	
Table 7: Study outcomes for both groups at baseline and 3 months after intervention	45	
Table 8: Pearson correlation between the measured parameters after intervention	48	
Table 9: Reported adverse events for both studied groups	51	

List of Figures

Figure 1: Relationship between cardiac output and left ventricle er	ıd diastolic
volume/pressure	5
Figure 2: The vicious cycle of heart failure	6
Figure 3: Synthesis of BNP and NT-Pro BNP	9
Figure 4: Heart failure diagnosis algorithm	10
Figure 5: Correlation between neopterin levels and NYHA classification	11
Figure 6: Heart failure treatment algorithm	15
Figure 7: Ivabradine structure	21
Figure 8: Summary procedure of measuring serum NT-Pro BNP	34
Figure 9: Calibration curve of serum NT-Pro BNP	35
Figure 10: Summary procedures of measuring serum Neopterin	38
Figure 11: Calibration curve of serum neopterin	39
Figure 12: Consort flow diagram for participants screening, randomization, all	location and
follow up	42
Figure 13: Change in NT-Pro-BNP and neopterin levels after intervention in	the studied
groups	46
Figure 14: Pearson correlation of NT-Pro-BNP with neopterin in the studied gr	oups before
and after intervention	49
Figure 15: Area under the ROC curve	50

Abstract

Background: Heart rate (HR) reduction is a cornerstone in heart failure (HF) therapy to improve patient outcomes. The aim of this study is to evaluate short term effect of ivabradine on NT-Pro BNP and neopterin in heart failure patients and assess the association between HR and these biomarkers.

Methods: A double blinded, parallel interventional study including sixty patients randomly allocated into ivabradine (5 mg twice daily) or non-ivabradine group (n=30, each) for 3 months. Lipid profile and kidney functions were performed and blood samples for NT-Pro BNP and neopterin were analysed at baseline and after 3 months of intervention in both groups.

Results: There was a significant improvement in NYHA class in ivabradine group (p < 0.001). Ejection fraction was improved in both groups after intervention (p < 0.001), with a greater improvement in ivabradine group (p=0.026). Heart rate was reduced in both groups (p < 0.001) with greater reduction in ivabradine group (p < 0.001). NT-Pro BNP and neopterin levels significantly decreased in ivabradine group (p < 0.001). Significant positive correlation was found between HR and biomarkers levels after intervention (NT-Pro BNP: p < 0.001, neopterin: p=0.002).

Conclusion: Ivabradine therapy reduced levels of both biomarkers which correlated well with HR. Biomarkers levels might provide a tool for assessing ivabradine effectiveness in HF.

1. Introduction

Congestive heart failure (CHF) is a complex clinical syndrome that can result from any functional or structural cardiac disorder that impairs the ventricles ability to fill with or eject blood ^(1–4). According to European Society of Cardiology (ESC) guidelines, pharmacological therapy for HF includes the use of angiotensin converting enzyme inhibitors (ACEIs) or angiotensin receptor blocker/neprilysin inhibitor (ARNI) in addition to beta-blockers, mineralocorticoid antagonist (MRA) and dapagliflozin/empagliflozin as first line therapy to reduce hospitalization and mortality. In case of intolerance to ACEIs or ARNI, angiotensin receptor blockers (ARBs) are the alternative choice. Loop diuretics are used only to improve signs and symptoms of congestion with no effect on morbidity or mortality. Other agents include, digoxin, hydralazine-isosorbide dinitrate (H-ISDN), and ivabradine ^(5,6).

Ivabradine is an I_f current inhibitor. The selective and specific inhibition of the cardiac pacemaker I_f current controls the spontaneous diastolic depolarization in the sinus node and regulates HR. Ivabradine is indicated in CHF NYHA II -- IV class with systolic dysfunction, in patients in sinus rhythm and whose HR is \geq 70 bpm, in combination with standard therapy including Beta-Blocker therapy or when Beta-blocker therapy is contraindicated or not tolerated $^{(7,8)}$.

To assess the efficacy of ivabradine therapy, HR was measured at definite intervals. Cardiac biomarkers have been related to the morbidity and mortality in HF patients. Example of those biomarkers are N-terminal-pro hormone BNP (NT-Pro BNP) and neopterin. It has been demonstrated that both levels of NT-Pro BNP and neopterin are elevated in patients with HF NYHA class 2-4 ^(9–16). Moreover, traditional therapies of HF demonstrated their ability to decrease

those biomarkers as a part of their role to improve the patient's condition. Thus, the use of both biomarkers is promising to assess efficacy of drugs used in the management of CHF ^(9,12–14,16,17). The aim of this study is to assess the efficacy of ivabradine therapy in patients with CHF using the cardiac biomarkers NT-Pro BNP and neopterin. Also, to assess the correlation between those biomarkers in CHF patients.

2. Review of literature

2.1 Definition and classification:

Congestive heart failure (CHF) is a complicated clinical condition that affects the ability of the heart ventricles to fill up or pump enough blood to meet requirements of the body ^(2,3). The incidence of HF increases with age reaching a peak in those older than 65 years ^(2,3). CHF can be classified based on mechanism of dysfunction into either systolic or diastolic HF ⁽³⁾. In systolic HF, the ventricles are unable to contract fully to pump enough blood to meet body requirements of oxygen and nutrients and thus, ejection fraction (EF) is reduced i.e. heart failure with reduced ejection fraction (HFrEF) ⁽³⁾. While in diastolic HF, ventricles can't fill adequately probably due to stiffening or hypertrophy that prevent their expansion, yet they have enough power to pump the blood to the rest of the body thus, EF is preserved i.e. Heart failure with preserved ejection fraction (HFpEF) ⁽³⁾.

There are a variety of causes of HF, hypertension, ischemic heart disease (IHD) and diabetes seem to be the most common ones among patients with HF^(1–3,18). Other causes of HF might include: cardiomyopathies, valvular heart disease, atrial fibrillation (AF), chronic kidney disease (CKD), obstructive pulmonary disease (COPD), thyroid dysfunction and anaemia ^(1–3,18).

2.2 Pathophysiology of heart failure:

The mechanism underlying the development of HF is not fully understood. A number of variables are responsible for the final consequences seen in HF patients ^(2,3). Cardiac output (CO) which is the volume of blood pumped per minute is determined by both stroke volume and HR, Stroke volume being volume of blood pumped per beat while HR is the number of beats per minute ^(3,19). Stroke volume is further determined by 3 variables: preload, afterload and contractility. Preload is the resistance the heart must pump against while afterload is the volume of blood returning to the