

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Effect of Cervical Margin Relocation and Haemostatic Agent Contamination on Margin Adaptation and Microleakage of Indirect Ceramic Restoration.

A thesis submitted to Faculty of dentistry Ainshams university

For

Partial fulfillment of the requirements of PhD degree in Fixed prosthodontics

Presented by

Marwa Mohammed Adel Mohammed

Assistant lecturer of fixed prosthodontics, fixed prosthodontics department

BDS. Faculty of dentistry, Ainshams university (2012)

MSc. Faculty of dentistry, Ainshams university (2018)

Faculty of Dentistry

Ainshams University

(2022)

Supervisors

Prof. Dr. Amina Mohammed Hamdy

Professor of Fixed Prosthodontics

Fixed Prosthodontics department

Faculty of Dentistry, Ain Shams University

Ass. Prof. Dr. Ahmed Ezzat Sabet

Associate professor of Fixed Prosthodontics

Fixed Prosthodontics department

Faculty of Dentistry, Ain Shams University

Dr. Kamal Khaled Ebeid

Lecturer of Fixed Prosthodontics

Fixed Prosthodontics department

Faculty of Dentistry, Ain Shams University

List of contents

List of figures	II
List of tables	VI
Introduction	1
Review of literature	3
Statement of problem	27
Aim of the study	28
Study methodology	29
Results	59
Discussion	82
Summary & Conclusion	93
Recommendations	95
Limitations	96
References	97
Arabic summary	121

List of figures

Figure 1sch	ematic pr	esentation of	normal bio	ological v	width	
Figure blocks	2		IPS		nax	CAD
_		SDR I		bulk	fill	flowable
_		Spectra		1	flow	flowable
-		Calibra		niversal		self-adhesive
$\boldsymbol{\mathcal{C}}$				3	••	Bond
		Hemos		gingiv	al	retraction
Figure 8 medium			a glass	s slab	with a	a separating
Figure 9 the root base was embedded with self-curing acrylic resin34						
Figure 10 mold		oth with it	ts base 1	removed	from	the circular
Figure Switzerland	d	11	Inla	•		Intensiv,
-		handpiece36		nted	in	paralleling
molar	·			-		b:upper first
.37	• • • • • • • • • • • •		• • • • • • • • • • • • •	• • • • • • • • • •	• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •

and	2mm	vical margin 2 above	the	CEJ				•
group		rams showing B,			c:			roup F, b: group
_	16 (Circumferentia 40	al matrix	x adjı	ısted	careful	ly a	round a
compo	site	ked inner side						
flowab	le	ked inner sid			·		C	composite
Figure applica		19			onding 42			agent
_		Elevation43	of	the	margin	n wi	th	flowable
Figure	21 The	mesial cavity	after cerv	ical ma	ırgin el	evation	1	43
_		Elevation of		•				
of		canning of pre						
Figure restora	tion	24		lling	46	of		the
Figure		ecking the fitt	•		oration	before	cryst	allization
.46				• • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • •	• • • • • • •	

Figure crystallization				restorati	ion	fitting	g	after
Figure 27 acid			fittin	g sur	face	with	9.5%	HF
Figure 28 A restoration			_			_		
Figure 29 margin		-	acid	etchii	ng c	of the	e ei	namel
Figure 30 cementation		•	of	resin	ceme	ent f	or :	inlays
Figure thermocycle	r			1		5	1	the
Figure microscope.		32		Scann	_		ele	ectron
Figure 33 completely with dentin continuous percentage%	continuo fracture,	us margin C; Part (calculate	(perfect of the red	et margii margin v as	n), B; a with a	dhesive gap and a	break the r	down
Figure 34 A tested	cervical	mar	gin				•	
Figure 35 Thresin sectioning					-			pefore
Figure 4000			36				I	somet
Figure isomet4000.	37	Sectioni	•	of 56	a	tootl	n	with

Figure microscope	38	Dino-lite57	digital
in non-elevated mar elevated margin an	rgin, b; score 0 in d d; score 0 in	for microleakage evalua n an elevated margin, c; non-elevated margin o	score 3 in non- f a restoration
7			5
CMR		ge margin adaptation (%	,
evaluation, A; show (CN), B; evaluation in group (FN), c; marginal	wing perfect ma of the interface evaluation of the gap	ip under SEM for margin without gap formate showing development on the interface showing do in	tion for group of marginal gap evelopment of group
haemostatic		e marginal adaptation (9	
•		e marginal adaptation (% naemostatic agent	
•		e marginal adaptation (9 R technique	
adaptation evaluation sample from group	on, A; showing a FH, C; showing	om each group under SI a sample from group CH g a sample from group B ap	I, B; showing a BH, all samples
Figure 46 Bar char	rt showing aver	rage microleakage score	e for different
			7
Figure 47 Bar chart	showing averag	ge microleakage score	73

Figure 48 representing different scores for the non-elevated group with the arrows referring to the leakage of silver nitrate through the margin, a; showing score 0, b; showing score 1, c; showing score 2, d; showing score 374
Figure 49 Representing different scores for elevated groups with the arrows showing the leakage of silver nitrate through the margin, a; showing score 0, b; showing score 2, c and d; showing score 375
Figure 50 Bar chart showing average microleakage score for different CMR techniques with and without hemostatic agent
Figure 51 Bar chart showing average microleakage score for different haemostatic agents within each CMR technique81

List of Tables

Table (1) <u>:</u>	showing the compositions of the materials used	29
Table (2) <u>:</u>	Representing grouping of the samples	38
Table (3)	Effect of different variables and their interactions on	
	marginal adaptation (%)	59
Table (4) <u>:</u>	Mean \pm standard deviation (SD) of marginal adaptation	
	(%) for different CMR techniques	60
Table (5) <u>:</u>	Mean \pm standard deviation (SD) of marginal adaptation	
	(%) for different hemostatic agents	63
Table (6) <u>:</u>	Mean \pm standard deviation (SD) of marginal adaptation	
	(%) for different CMR techniques with and without	
	hemostatic agent	65
Table (7) <u>:</u>	Mean \pm standard deviation (SD) of marginal adaptation	
	(%) for different hemostatic agents within each CMR	
	technique	68
Table (8) <u>:</u>	Effect of different variables and their interactions on	
	microleakage score	70
Table (9) <u>:</u>	${\it Mean \pm standard\ deviation\ (SD)\ of\ microleakage\ score\ for}$	
	different CMR techniques	71
Table (10) <u>:</u>	${\it Mean \pm standard\ deviation\ (SD)\ of\ microleakage\ score\ for}$	
	different hemostatic agents	72
Table (11) <u>:</u>	${\it Mean \pm standard\ deviation\ (SD)\ of\ microleakage\ score\ for}$	
	different CMR techniques with and without hemostatic	
	agent	77
Table (12) <u>:</u>	${\it Mean \pm standard\ deviation\ (SD)\ of\ microleakage\ score\ for}$	
	different hemostatic agents within each CMR technique	80

Acknowledgement

No words can express my deepest thanks and sincere gratitude to *Dr. Amina Mohamed Hamdy*, professor of fixed prosthodontics, Fixed prosthodontics department, Ainshams university. Who provided me with support and helped me a lot through this project, and gave me love and guidance.

I also want to express my sincere gratitude to *Dr. Ahmed Ezzat sabet*, Associate professor of fixed prosthodontics, Ainshams university, for his endless support through my clinical and academic career, and his unreserved help and guidance throughout this project.

Deepest thanks and gratitude to *Dr. kamal Khaled Ebeid*, lecturer of fixed prosthodontics, Ainshams university, for his kindness, great support and help from finding an appropriate subject to the process of writing the thesis.

Finally, I want to thank my dear professors and colleagues for giving me all the love and support.

Dedication

This work is dedicated to My dad's soul and my dear mother,

My beloved husband and sons

My precious sister and brother

Introduction

The success of tooth-colored restorations, whether direct or indirect, using composites and ceramics, greatly depends on the quality and stability of their marginal adaptation ^[1].

Direct composites are indicated and effective for small and medium sized class I and II cavities. In larger cavities, the use of indirect porcelain or resin composite restorations is still the most common approach for reducing the adverse effects of bulk polymerization contraction in large cavities as the volume of composite resin is strictly limited to the cementing gap ^[2].

One of the problems that appear during restoring a large cavity with an indirect restoration is that the proximal box is often located sub-gingival below the cementoenamel junction (CEJ). Sub-gingival margins may complicate impression-making and adhesion of the restoration during final cementation. cervical margin relocation is a conservative approach by which the subgingival margin can be elevated more occlusally by applying a resin composite material.

Absence of enamel in the cervical margin results in areas of weak bonding. Even with a highly adapted restoration, Bonding to dentin is not as stable as bonding to enamel and associated with higher risks of micro leakage, patient sensitivity and recurrent caries.

Although it is a challenge to perform an adhesive restoration in this region, CMR as a single procedure is still better controlled and contamination is more easily avoided, even when the rubber dam placement is not feasible [3].

After relocating the cavity margins to a supra-gingival position, a sufficient rubber dam application with dry conditions that needed for adhesive cementation becomes feasible. Moreover, this approach avoids bulky restorations.

Another problem with the deeply located subgingival cavities is the difficulty of bleeding and the crevicular fluid control. Application of haemostatic agents in deep subgingival cavities helps in bleeding control in these areas for better isolation.

However, use of haemostatic agents raised the question whether or not contamination with these materials affects bonding to the dental surface, such agents have acidic pH values and may interfere with the bonding procedure to dentin by removing the smear layer [4]. With subsequent effect on the marginal integrity of the tooth restoration interfac

Review of literature

1-Indirect tooth-colored intra-coronal restorations

During the past decade, most dental procedures have moved toward a more conservative approach, today whatever the depth of the cavity, pulp capping and peripheral seal concepts have replaced automatic root canal treatment, partial preparations and morphologically oriented preparations are replacing the peripheral preparations and post and core treatments are less frequently indicated.

However, a major difficulty of this conservative approach is determining its limits. Knowing exactly when to go for peripheral preparation instead of partial preparation and when to extract, not restore a tooth ^[5].

The Recently introduced computer aided design/ computer aided manufacturing (CAD/CAM) materials have overcome volume defects and voids found in conventionally sintered porcelain which allow them to have better tensile strength ^[6]. Moreover, this evolving technology has opened new horizons to provide more accurate, highly esthetic, and low time consumption restorations.

Though proven to be a very effective modality of restoration marginal accuracy is of principle concern ^[7]. Due to the multiple factors involved during CAD/CAM procedure – as scanning process, designing the restoration, milling and firing- marginal accuracy is inevitably affected ^[8,9].