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Summary:

In this thesis, we tackle the following question: can one consolidate multi-scale
aggregation while learning channel attention more efficiently? To this end, we
avail channel-wise attention over multiple feature scales, which empirically shows
its aptitude to replace the limited local and uni-scale attention modules. Atten-
tion mechanisms have been explored with CNNs across the spatial and channel
dimensions. However, all the existing methods devote attention to capturing local
interactions from a uni-scale. Thus we propose EMCA, which is lightweight and
can efficiently model the global context further; it is easily integrated into any
feed-forward CNN architectures and trained in an end-to-end fashion. We validate
our novel architecture through comprehensive experiments on image classification,
object detection, and instance segmentation with different backbones.
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