

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سامية زكى يوسف

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

EMCA: EFFICIENT MULTISCALE CHANNEL ATTENTION MODULE FOR DEEP NEURAL NETWORKS

By

Eslam Mohamed Ali

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

EMCA: EFFICIENT MULTISCALE CHANNEL ATTENTION MODULE FOR DEEP NEURAL NETWORKS

By

Eslam Mohamed Ali

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

Under the Supervision of

Prof. Dr. Mohsen A. Rashwan

Professor of EECE department
Electronics and Communications Engineering
Faculty of Engineering , Cairo University

EMCA: EFFICIENT MULTISCALE CHANNEL ATTENTION MODULE FOR DEEP NEURAL NETWORKS

By

Eslam Mohamed Ali

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

in

Electronics and Communications Engineering

Approved by the Examining Committee:	
Prof. Dr. Mohsen A. Rashwan,	Thesis Main Advisor
Dr. Omar Ahmed Nasr,	Internal Examiner
Prof. Dr. Khaled Mostafa,	External Examiner
Professor of Computer Science department	
Faculty of Computer Science Cairo University	itv

FACULTY OF ENGINEERING ,CAIRO UNIVERSITY GIZA,EGYPT 2022 **Engineer's Name:** Eslam Mohamed Ali

Date of Birth: 02/03/1995 **Nationality:** Egyption

E-mail: islam.bakr.2017@gmail.com

Phone: 01120300472

Address: Al Khamael Compound, Sheikh Zayed

, Giza, Egypt, 12588

Registration Date: 19/03/2019 **Awarding Date:** -/-/2022

Degree: Master of Science

Department: Electronics and Communications Engineering

Supervisors:

Prof. Dr. Mohsen A. Rashwan

Examiners:

Prof. Dr. Mohsen A. Rashwan

Dr. Omar Ahmed Nasr

Prof. Dr. Khaled Mostafa

(Thesis Main Advisor)

(Internal Examiner)

(External Examiner)

Professor of Computer Science department Faculty of Computer Science, Cairo University

Title of Thesis:

EMCA: Efficient Multiscale Channel Attention Module for Deep Neural Networks

Key Words:

Deep Learning; Machine Learning; Channel Attention Mechanisms; Convolution Neural Network; Classification

Summary:

In this thesis, we tackle the following question: can one consolidate multi-scale aggregation while learning channel attention more efficiently? To this end, we avail channel-wise attention over multiple feature scales, which empirically shows its aptitude to replace the limited local and uni-scale attention modules. Attention mechanisms have been explored with CNNs across the spatial and channel dimensions. However, all the existing methods devote attention to capturing local interactions from a uni-scale. Thus we propose EMCA, which is lightweight and can efficiently model the global context further; it is easily integrated into any feed-forward CNN architectures and trained in an end-to-end fashion. We validate our novel architecture through comprehensive experiments on image classification, object detection, and instance segmentation with different backbones.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Eslam Mohamed Ali	Date:
Signature:	

Acknowledgements

All thanks and praises to **ALLAH** for providing the strength and time to complete my thesis besides my work.

I want to say a special thank you to **my parents**, **my brother**, and **my wife**. Without their help, I would not have achieved anything.

A special thanks also delivered to my supervisors, **Dr. Mohsen Rashwan** and **Dr. Ahmed El-Sallab**, as their guidance and support have made this an inspiring journey for me.

I would also like to thank the communication and electronics department at Cairo University and Zewail University, especially **Dr. Mohsen Rashwan** and **Dr. Tamer Ali**, for facilitating my experiments' required hardware (GPUs).

Table of Contents

וע	sciair	ner	1
A	cknov	vledgements	ii
Ta	ble o	f Contents	iii
Li	st of '	Tables	v
Li	st of]	Figures	vi
Li	st of S	Symbols and Abbreviations	viii
Li	st of l	Publications	X
Al	ostrac	et	xi
1	CH	APTER 1: INTRODUCTION	xii
	1.1	Problem definition	1
	1.2	Motivation	3
	1.3	Thesis Objectives	3
	1.4	Contributions	4
	1.5	Thesis Organization	4
2	CH	APTER 2: LITERATURE REVIEW	5
	2.1	Deep Neural Networks	5
	2.2	Convolution Neural Networks	8
	2.3	Multi-scale	11
	2.4	Channel attention	13
	2.5	Spatial attention	19
	2.6	Spatial and channel attention	20
3	CH	APTER 3: EFFICIENT MULTISCALE CHANNEL ATTENTION	
	(EM	ICA) MODULE	22
	3.1	Abstract Overview for Channel Attention Modules Framework	23

	3.2	Revisiting Channel Attention Modules Integration	 24
	3.3	Avoiding Dense Integration	 26
	3.4	Multi-scale Incorporation	 27
		3.4.1 Coverage Region (R)	 28
		3.4.2 Channel Dimension Alignment (CDA)	 29
		3.4.3 Spatial Dimension Alignment (SDA)	 29
		3.4.4 Multi-scale Aggregation Block (MAB)	 29
4	CH	PTER 4: EXPERIMENTS	34
	4.1	Datasets	 35
	4.2	Implementation Details	 40
	4.3	Effect of Coverage Region (R)	 41
	4.4	Image classification	 43
		4.4.1 Image Classification on ImageNet-1K	 45
		4.4.2 Image Classification on Tiny-ImageNet	 46
	4.5	Object Detection	 48
		4.5.1 Benchmarking on COCO dataset	 48
		4.5.2 Benchmarking on KITTI dataset	 49
	4.6 Instance Segmentation		 49
	4.7	Robustness	 49
		4.7.1 Zero shot rotation immunity testing	 50
		4.7.2 Top-1 validation accuracy curves	 50
		4.7.3 Dissecting the produced learnable scales	 52
		4.7.4 Visualizing attention maps	 52
5	CO	CLUSION AND FUTURE WORK	56
	5.1	Conclusion	 57
	5.2	Future Work	 58
Re	eferen	ees	59

List of Tables

2.1	Comparison of various channel attention modules (CA-modules)	21
3.1	Comparison of channel attention module by projecting each channel mech-	
	anism according to the abstract global context modeling skeleton that was	
	introduced by GCNet [1] in Figure 4(a)	32
3.2	Comparison of various integration mechanisms, i.e., ALL, First, and Last,	
	for integrating CA-module into Deep CNN backbone	33
4.1	Effect of Coverage Region (R)	42
4.2	Comparison between our three proposed versions of EMCA module that	
	adopt SE, ECA, and SRM as the cross channel excitation block producing,	
	EMCA-SE, EMCA-ECA, and EMCA-SRM, respectively	43
4.3	Comparison of different attention methods on ImageNet	44
4.4	Comparisons with state-of-the-art attention modules on Tiny-ImageNet in	
	terms of the number of parameters (#P.) in millions, GFLOPs, FPS, and	
	top-1 accuracy.	47
4.5	Object detection results of different attention methods on COCO val2017.	48
4.6	Comparisons with state-of-the-art attention modules on KITTI-RGB [96]	
	in terms of mAP	48
4.7	Instance segmentation results of different methods using Mask R-CNN on	
	COCO val2017	49
4.8	Analyzing the robustness of CA-modules on ImageNet	50

List of Figures

1.1	Abstract overview for three well-known computer vision tasks; image	
	classification, object detection, and instance segmentation	1
2.1	Abstract overview demonstrates the critical difference between traditional	
	machine learning algorithms and deep learning algorithms	6
2.2	Abstract overview for an arbitrary convolution neural network (ConvNet).	
	Where an input image is feed to a convolution layer, which consists of	
	stacked filters, followed by a pooling layer. Finally, the spatial learned	
	features are aggregated using a fully connected layer	8
2.3	Example of the learned representation for two filters. F_1 captures the	
	vertical edges, while F_2 captures the horizontal edges	9
2.4	Illustration for the key difference between the conventional kernel and the	
	dilated convolution layer	10
2.5	Illustration for the key differences between the conventional convolution	
	layer, the depth-wise convolution layer, and the point-wise convolution layer.	11
2.6	Abstract overview for the feature reuse concept and multi-scale learning	
	paradigm	12
2.7	Abstract overview of the channel attention modules	13
2.8	Abstract overview of the spatial attention modules	19
2.9	Abstract overview of the heterogeneous architecture that employ both	
	spatial and channel attention modules	20
3.1	Abstract overview demonstrates two possibilities of integrating a channel	
	attention module (CA-module) into an arbitrary CNN backbone	25
3.2	The upper part shows the diagram of our Efficient Multi-scale Channel	
	Attention (EMCA) module. The lower part shows our proposed integration	
	method that consolidates multi-scale information based on the Coverage	
	Region (R), i.e., Equation 3.16	28
4.1	Visualization for samples of ImageNet dataset [34]	36
4.2	Visualization for samples of Tiny-ImageNet dataset [94].	37

4.3	Visualization for samples of KITTI dataset [96]	38
4.4	Visualization for samples of MS-COCO dataset [95]	39
4.5	Training ResNet, local channel attention modules (LCA) baseline archi-	
	tectures and their EMCA counterparts on ImageNet validation set	50
4.6	Comparison for the learned channel scales by our novel EMCA module	
	against local channel attention modules. Better view with zooming in	51
4.7	Sample visualization on ImageNet dataset [34] generated by GradCAM	
	[109]	53
4.8	Sample visualization on ImageNet dataset [34] generated by GradCAM	
	[109]	54

List of Symbols and Abbreviations

Symbol	Description
X	Input feature map
R	Coverage region
S	Number of the stages
N_{ij}	The number of the blocks' output in the stage i j utilized
	into the channel attention block C_i
W	Neural network parameters or weights
Z	Learned channel scales
σ	sigmoid activation function
Н	Height dimension of input feature map
W	Width dimension of input feature map
C	Channel dimension of input feature map
F(x)	Function models CNN block
v	Non-linear activation function

Abbreviation Description

DNN

ΑI Artificial Intelligence AvgPool Average Pooling Layer C₁D 1 Dimensional Convolutional layer CA-module Channel Attention module Cat Concatenation operation CDA Channel Dimension Alignment **CNN** Convolution Neural Network Conv Convolution layer DCT Discrete Cosine Transform

Deep Neural Network

EMCA Efficient Multi-scale Channel Attention module

FC Fully Connect layer

GPU Graphics Processing Unit

LSTM Long Short-Term Memory

MAB Multi-scale Aggregation Block

MAxPool Maximum Pooling Layer

MLP Multi Layer Perceptron

SDA Spatial Dimension Alignment

List of Publications

1. E. Mohamed, A. El-Sallab and M. Rashwan, "PKCAM: Previous Knowledge Channel Attention Module" in Proceedings of the Thirty-fifth Conference on Neural Information Processing Systems, ML4AD Workshop, 2021.