

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

RISK ASSESSMENT OF WIDELY USED HERBICIDES ON SOME FRUIT ORCHARDS IN EGYPT

By

AMIRA SALAH MAHMOUD OTHMAN

B. Sc. Agric. Sc. (Pesticide), Fac. of Agriculture, Ain Shams Univ., (2008) M. Sc. Agric. Sc. (Pesticide), Fac. of Agriculture, Ain Shams Univ., (2016)

A Thesis Submitted in Partial Fulfillment
Of
The Requirements for the Degree of

in
Agricultural Sciences
(Pesticides)

Department of Plant Protection Faculty of Agriculture Ain Shams University

Approval Sheet

RISK ASSESSMENT OF WIDELY USED HERBICIDES ON SOME FRUIT ORCHARDS IN EGYPT

By

AMIRA SALAH MAHMOUD OTHMAN

B. Sc. Agric. Sc. (Pesticide), Fac. of Agriculture, Ain Shams Univ., (2008) M. Sc. Agric. Sc. (Pesticide), Fac. of Agriculture, Ain Shams Univ., (2016)

This thesis for Ph. D. degree has been approved by:
Dr. Moustafa Abdellatif Abbassy Prof. Emeritus of Pesticides Chemistry and Toxicology, Faculty of Agriculture, Damanhour University.
Dr. Mohamed AbdelSalam Rashed Prof. Emeritus of Genetics, Faculty of Agriculture, Ain Shams University.
Dr. Walaa Mohamed Abd El Ghany El Sayed Prof. of Pesticides Chemistry and Toxicology, Faculty of Agriculture Ain Shams University and Vice Dean of Postgraduate Studies and Research.
Dr. Mohamed El-Said Saleh El-Zemaity Prof. Emeritus of Pesticides Chemistry and Toxicology, Faculty of Agriculture, Ain Shams University.

Date of Examination: 29 / 6 / 2022

RISK ASSESSMENT OF WIDELY USED HERBICIDES ON SOME FRUIT ORCHARDS IN EGYPT

By

AMIRA SALAH MAHMOUD OTHMAN

B. Sc. Agric. Sc. (Pesticide), Fac. of Agriculture, Ain Shams Univ., (2008) M. Sc. Agric. Sc. (Pesticide), Fac. of Agriculture, Ain Shams Univ., (2016)

Under the supervision of:

Dr. Mohamed El-Said Saleh El-Zemaity

Prof. Emeritus of Pesticides Chemistry and Toxicology, Department of Plant Protection, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Walaa Mohamed Abd El Ghany El Sayed

Prof. of Pesticides Chemistry and Toxicology, Department of Plant Protection, Faculty of Agriculture, Ain Shams University and Vice Dean of Postgraduate Studies and Research.

Dr. Ahmed Hanafi Hussein Hanafi

Prof. of Pesticides Chemistry, Department of Plant Protection, Faculty of Agriculture, Ain Shams University.

ABSTRACT

Amira Salah Mahmoud Othman: Risk Assessment of Widely used Herbicides on Some Fruit Orchards in Egypt. Unpublished Ph.D. thesis, Department of Plant Protection, Faculty of Agriculture, Ain Shams university, 2022.

The aim of the present study is to assay the toxic effects and carried on risk assessment analysis for glyphosate and glufosinate ammonium using EIQ model and comparing the obtained results to conclude the possibility of recommending the use of glufosinate ammonium as a possible alternative to glyphosate.

The results of the toxicological tests showed different effects of both herbicides on exposed mice to the tested doses than untreated, represented by changes in some biochemical parameters indicative of liver and kidney functions, abnormalities in sperm cells, and effects that stimulated the activity of some genes related to brain and liver inflammation. Histopathological study confirmed convergent changes in brain and liver tissues. Conversely, the analysis of the results of the risk assessment for both pesticides using the Environmental Impact Quotient (EIQ) model showed a moderate Field Use Rating (EIQ FUR) value for glyphosate, and a low rate for glufosinate ammonium, which indicates that it is safer in terms of the environmental impact quotient than glyphosate, and that it can be used as an alternative for it in case of restriction or discontinuation of its use on orchids and other crops. These results confirm the importance of recommending users and applicators of both herbicides to take into account safety procedures and use protective clothing and tools to avoid exposure to each herbicide, in addition to adhering to good agricultural practices when using them.

Keywords: Risk Assessment, Glyphosate, Glufosinate Ammonium, EIQ, Non-Target Organism, Weed Control, Toxic Effects and Residue of Herbicides.

ACKNOWLEDGEMENT

I would like to express the deepest gratitude to my Principal Supervisor, **Dr. Mohamed El –Said Saleh El –Zemaity**, Professor Emeritus of Pesticides, Department of Plant Protection, Faculty of Agriculture, Ain Shams University who introduced me to the wonderful world of pesticides and valuable advices, preparation of the manuscript and overcoming difficulties throughout the whole period of study.

I'm grateful to **Dr. Walaa Mohamed Abd El Ghany,** Professor of Pesticides, Department of Plant Protection, Faculty of Agriculture, Ain Shams University for valuable advices, encouragement and guidance during the experimental work.

My deepest thanks and gratitude are also to **Dr. Ahmed Hanafi,** Professor of Pesticides, , Department of Plant Protection, Faculty of Agriculture, Ain Shams University for his great help, valuable advices, encouragement and guidance during this study.

Thanks also are due to Prof. **Dr. Ayman Al Saidy** Professor of Molecular Genetics, Department of Genetics, Faculty of Agriculture, Alexandria University for his facilities during conducting

I could never have reached this point without the love and support from my family for their great help and assistance during the study

Finally, the writer would like to thank all the staff numbers in Plant Protection Department of Faculty of Agriculture, Ain Shams University for helping and real cooperation.

CONTENTS

	Page
LIST OF TABLES	VII
LIST OF FIGUERS	X
LIST OF ABBRIVATION	XIII
INTRODUCTION	1
REVIEW OF LITRATURE.	6
1.Evaluate the efficiency of glyphosate and glufosinate	
ammonium (as possible alternative) against weeds found in	
citrus orchards.	6
1.1. Glyphosate	6
1.2. Glufosinate Ammonium	9
2.Toxicity and Biochemical and Histological effects of	
glyphosate and glufosinate ammonium on mice	10
2.1. Glyphosate	10
2.2. Glufosinate Ammonium	16
3. Genotoxicity of glyphosate and glufosinate ammonium	17
3.1. Glyphosate	17
3.2. Glufosinate Ammonium	20
4. Toxic effects of glyphosate and glufosinate ammonium on non-	
target	21
4.1. Honeybee	21
4.2. Earth Worm	24
4.2.1. Glyphosate	24
4.2.2. Glufosinate Ammonium	27
5. Soil half- life and residues of glyphosate and glufosinate	
Ammonium	28
5.1. Glyphosate	28
5.2. Glufosinate Ammonium	33
6. Risk assessment of glyphosate and glufosinate ammonium	36
MATERIAL AND METHODS	41
1. Herbicides used	41

1.1. Glyphosate	41
1.2. Glufosinate Ammonium	42
2. Efficiency of glyphosate and glufosinate ammonium against	
present weeds in citrus orchards.	42
3. Toxicological studies	43
3.1. Determination LD ₅₀ (values) of glyphosate and glufosinate	
ammonium on mice	43
3.2. Sub lethal effects of the two tested herbicides	43
3.2.1. Biochemical analysis	44
3.2.1.1. Aspartate aminotransferase (AST)	44
3.2.1.2. Determination of Alanine aminotransferase (ALT)	45
3.2.1.3. Determination of Creatinine – Jaffè	45
3.2.1.4. Determination of Urea	46
3.2.2. Histological effects of glyphosate and glufosinate	
ammonium against mice	47
4. Genotoxicity Studies	47
4.1. Cytogenetic analysis.	47
4.1.1. Analysis of chromosomal aberrations and mitotic index in	
mice bone marrow cells.	47
4.1.2. Analysis of micronucleus test of polychromatic	
erythrocytes in mice	48
4.1.3. Sperm-shape abnormalities	49
4.2. Molecular Genetic Analysis	49
4.2.1. RNA extraction using Direct- zol TM RNA MiniPrep	49
4.2.2. Quantitative Real Time-PCR	50
4.3. Statistical analysis	51
5. Toxicity of glyphosate and glufosinate Ammonium on non-	
target organisms.	52
5.1. Honey Bee (Adult)	52
5.1.1. Acute Toxicity test	52
5.1.2. Chronic Toxicity test	53
5.2. Earth Worm	54

5.2.1. Acute toxicity test assay	54
5.2.2.1. Filter paper test	54
5.2.2.2. Artificial soil test	55
5.2.2. Chronic toxicity test assay	55
5.2.3. Data analyses	56
6. Dissipation of glyphosate and glufosinate ammonium residues	
in soil	57
6.1. Sampling of Soil	57
6.2. Sample extraction, clean -up and HPLC determination of	
tested herbicides	57
6.2.1. Glyphosate	57
6.2.2. Glufosinate Ammonium	57
6.2.3. Clean up	58
6.3. Chromatographic conditions	58
6.4. Recovery study	58
6.5. Standard calibration curve of glyphosate and glufosinate	
ammonium	59
6.6. Determination of T ½ (half-life) period in soil for the two	
tested herbicides	60
7. Risk Assessment of glyphosate and glufosinate ammonium	
under local conditions.	60
RESULTS	65
1. Efficiency of glyphosate and glufosinate ammonium against	
present weeds in citrus orchards.	65
2. Toxicological studies	70
2.1. Determination LD ₅₀ (values) of glyphosate and glufosinate	
ammonium on mice	70
2.2. Hazard assessment of the tested compound against non-target	
mice	70
2.3. Biochemical analysis (Hepatic and renal function enzymes)	71
2.4. Histopathological effects of glyphosate and glufosinate	
ammonium on mice	72

2.4.1. Brain	72
2.4.1.1. Cerebral Cortex.	73
2.4.1.2. Striatum	74
2.4.1.3. Cerebellum	76
2.4.1.4. Fascia Dentate	77
2.4.2. Liver	78
3. Genotoxicity Studies	80
3.1. Cytogenetic analysis	80
3.1.1. Analysis of chromosomal aberrations and mitotic index in	
mice bone marrow cells	80
3.1.2. Analysis of micronucleus test of polychromatic	
erythrocytes in mice	81
3.1.3. Sperm-shape abnormalities	83
3.2. Molecular Genetic Analysis	86
3.2.1. mRNA Expression of marker genes in glyphosate and	
glufosinate ammonium treated mice	86
3.2.2. Quantitative Real Time-PCR	86
3.2.2.1. The effect of GLY - and GLUA- on the IL-1 β , IL-6,	
COX-2 mRNA expressions in the liver tissue samples	86
3.2.2.2. The effect of GYP - and GLP- on the TNFα, BDNF, TrkB	
mRNA expressions in the liver tissue samples	86
3.2.3. Statistical analysis	92
4. Toxicity of glyphosate and glufosinate ammonium on non-	
target organisms.	92
4.1. Adult Honeybee	92
4.1.1. Acute Toxicity Test	92
4.1.2. Chronic Toxicity Test	93
4.1.3. Hazard assessment of the tested compound against non-	
target Apis mellifera.	94
4.2. Earth Worm	94
4.2.1. Acute toxicity test.	94
4.2.1.1. Filter paper test	94

4.2.1.2. Artificial soil test	97
4.2.2. Chronic toxicity test assay	100
4.2.3. Hazard assessment of the tested compound against non-	
target Allolobophora calignosa	104
5. Dissipation and residue in soil	105
5.1. The dissipation of glyphosate and glufosinate ammonium	
residues in soil	105
5.2. The dissipation of glyphosate and glufosinate ammonium	
residues in soil	109
6. Risk Assessment of glyphosate and glufosinate ammonium	110
DISCUSSION	112
1. Efficiency of glyphosate and glufosinate ammonium against	
present weeds in citrus orchards.	112
2. Toxicological studies	113
2.1. LD ₅₀ (values) of glyphosate and glufosinate ammonium on	
mice (including administration acute and sub-acute) toxicity	
value	113
2.2. Biochemical assay	114
2.3. Histopathological effects of glyphosate and glufosinate	
ammonium on mice	114
3. Genotoxicity Studies	115
3.1. Cytogenetic analysis	115
3.2. Molecular Genetic Analysis	117
4. Toxicity of glyphosate and glufosinate ammonium on non-	
target organisms	118
4.1. Honeybee (Adult)	118
4.2. Earth Worm	119
4.2.1. Acute toxicity test	119
4.2.2. Chronic toxicity test assay	120
5. The dissipation of glyphosate and glufosinate ammonium	
residues and kinetic in soil	121
6. Risk assessment of glyphosate and glufosinate ammonium	123

ENGLISH SUMMARY	126
REFERENCES	133
ARABIC SUMMARY	

LIST OF TABLES

Table	Title	Page
No.		
1.	Primers used for quantitative real time PCR	
	analysis	51
2.	Reagents required per sample	52
3.	Temperature and Times for the PCR protocol	52
4.	Percentage of recovery of glyphosate and	
	glufosinate ammonium in soil	59
5.	Risk indicators used to calculate EIQ of glyphosate	63
6.	Risk indicators used to calculate EIQ of glufosinate	
	ammonium	64
7.	Effect of glyphosate and glufosinate ammonium on	
	dry weight of Cynodon dactylon L (Bermuda	
	grass) under field conditions	66
8.	Effect of glyphosate and glufosinate ammonium on	
	dry weight of Convolvulus arvensis L (Field	
	Bindweed) under field conditions	66
9.	Effect of glyphosate and glufosinate ammonium on	
	dry weight of Sonchus oleraceus L (Annual Sow	
	thistle) under field conditions	67
10.	Effect of glyphosate and glufosinate ammonium on	
	dry weight of Sisymbrium irio L (London Rocket)	
	under field conditions	67
11.	The acute oral LD 50 values of tested pesticide for	
	male mice.	68
12.	Relationship between LD 50, LC50, Hazard Index	
	and risk Quotient (RQ) for selected herbicides	
	against mice	68
13.	Biochemical serum parameters of male mice	
	treated orally with glyphosate and: glufosinate	
	ammonium for 14&28 days.	70

14.	Frequencies of chromosomal aberrations induced	
	in male bone marrow cells treated orally with	
	glyphosate and glufosinate ammonium for 14 &28	
	day	78
15.	Frequencies of micronucleus induction in male	
	bone marrow cells treated orally with glyphosate	
	and: glufosinate ammonium for 14& 28 days	80
16.	Frequencies of sperm abnormalities induced in	
	male mice treated orally with glyphosate and:	
	glufosinate ammonium for 14&28 days	82
17.	Comparison between different treatment and	
	control group according to TNF, BNF and TrKB	
	genes expression in brain samples using one way	
	ANOVA	90
18.	Comparison between different treatment and	
	control group according to IL-1B, IL-6 and COX	
	genes expression in liver samples using one way	
	ANOVA.	90
19.	Acute toxicity of glyphosate and glufosinate	
	ammonium against honeybees.	91
20.	Toxicity parameters of glyphosate and glufosinate	
	Ammonium against honeybees.	91
21.	Relationship between LD 50, LC50, Hazard Index	
	and risk Quotient (RQ) for selected herbicides	
	against honeybee	92
22.	Toxicity parameters of Glyphosate and Glufosinate	
	Ammonium against Allolobophora calignosa after	
	28 days.	
		99
23.	Effects of exposure to different doses of	
	Glyphosate and Glufosinate Ammonium in	102

	tropical artificial soil on the number of juveniles	
	and fresh weight of Allolobophora calignosa.	
24.	Relationship between LD 50, LC50, Hazard Index	
	and risk Quotient (RQ) for selected herbicides	
	against Allolobophora calignosa	103
25.	Residues of glyphosate and % of dissipation in	
	three levels of soil depth under field conditions	105
26.	Residues of glufosinate ammonium and % of	
	dissipation in three levels of soil depth under field	
	conditions	106
27.	Degradation kinetics of glyphosate and glufosinate	
	ammonium residue in soil	108
28.	Risk indicators of glyphosate as calculated by EIQ	
	formula	109
29.	Risk assessment of glufosinate ammonium by EIQ	
	formula	111