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Introduction

The convexity of functions plays a central role in many various fields,
such as economics, mechanics, biological system, optimization, and
other areas of applied mathematics. Throughout this thesis, let I be a
nonempty, connected, and bounded subset of R. A real valued function
f(z) of a single real variable x defined on I is said to be convex, if for
all u, v € I and X € [0, 1], one has the inequality:

fu+ (1 =Xv) <Af(u) + (1= A)f(v). (1)

At the beginning of the 20" century, many generalizations of convex-
ity were extensively introduced and investigated in a number of ways
by numerous authors in the past and present. One way to generalize
the definition of a convex function is to relax the convexity condition
1(for a comprehensive review, see the monographs [41]).

As it is well known, the notion of the ordinary convexity can be
expressed in terms of linear functions. An important direction for gen-
eralization of the classical convexity was to replace linear functions by
another family of functions. For instance, Beckenbach and Bing [6], [7]
generalized this situation by replacing the linear functions with a fam-
ily of continuous functions such that for each pair of points p;(z1,y1)
and py(x2, yo) of the plane there exists exactly one member of the fam-
ily with a graph joining these points.

More precisely, let {F(x)} be a family of continuous functions F(x)
defined on a real interval I then, a function f : I — R is said to be sub
F-function, if for any u,v € I with u < v, there is a unique member
of {F(x)} satisfying

v



INTRODUCTION

L. F(u) = f(u) and F(v) = f(v),
2. f(z) < F(x) for all z € [u,v].

The sub F-functions possess various properties analogous to those
of classical convex functions [6], [8], [7], [10]. For example, if f : [ — R
is sub F-function, then for any u,v € I, the inequality

f(x) = F(x)
holds outside the interval (u,v).

Of course mathematicians were able before 1937 to generalize the
notion of convex functions [55], [56], [63]. In 1908, Phragmén and
Lindeldf (see, [55]) dealed with family of trigonometric functions. More
precisely, a function f : I — R is said to be trigonometrically p-
convex, if for any arbitrary closed subinterval [u,v] of I such that
0 < p(v —u) < =, the graph of f(x) for x € [u,v] lies nowhere above
the unique p- trigonometric function, determined by the equation:

M(z) = M(z;u,v, f) = Acos pr + Bsinpz,

where A and B are chosen such that M(u) = f(u), and M(v) = f(v).
Equivalently, if for all x € [u, v]

f(x) < M(z) = f(u)sin p(v ;DI;(J; i(Z; sin p(z — u).

Full details can be found in classic books [3], [46], [57], [58] or in the
monographs like [48].

In 2016, Ali [4] introduced the definition of hyperbolically p-convex
functions in the sense of Beckenbach. For particular choices of the

two-parameter family
F(x) = H(x) = Acoshpz 4+ Bsinhpz, p € R\ {0},

where A and B are chosen such that H(u) = f(u) and H(v) = f(v)
which is known as sub H-function.
Actually, this class of functions has three names:
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e Sub H-functions in the sense of Beckenbach (see [6]), which have
been introduced and studied in 2016, by Ali see [4].

e Hyperbolically convex functions are have been suggested also by
Aliin 2016 [4] as they are analogous to the notion of trigonometri-
cally convex functions which have been considered by Phragmén
and Lindelof (see [55]).

e Hyperbolic p-convex functions considered by Dragomir in 2018
(see [22]).

Currently, we choose hyperbolic p-convex functions as a name for

our class for two reasons

e First
The value of p can be used to distinguish between hyperbolic

p-convex functions and hyperbolic p-concave functions (see Ex-
ample 1.12.3).

e Second
To avoid ambiguity between hyperbolically convex functions in

non-Euclidean geometry and our class.

In 2016, Ali [4] introduced sub E-convex functions by dealing with

a family {E(x)} of exponential functions
E(z) = Aexp Bz,

where A, B are arbitrary constants. More precisely, [4], [28] a positive
function f : I — (0, 00) is said to be a sub E-convex function on I, if
for all x € [u,v] C I,

f(x) < E(x)
where A and B are chosen such that E(u) = f(u) and E(v) = f(v).

Finally, in this thesis we study some properties of classes of gener-
alized convex functions which analogous to those of classical convex
functions. Furthermore, we established some new integral inequalities
of Hermite-Hadamard and Hermite-Hadamard-Fejér types. Also, we

vi
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introduced a class BE|a, b] of functions representable as a difference of
two sub E-convex functions.
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Summary

The aim of this thesis is to
1- Discuss some classes of the generalized convex functions in the sense
of Beckenbach.
2- Study the main characterizations of sub E-convex functions.
3- Extend some properties and integral inequalities (such as: Hermite-
Hadamard, Hermite-Hadamard-Fejér, Ostrowski and Trapezoid, ...)
which are known for ordinary convex functions.
4- Show that some results introduced by Hiiseyin Budak [11], in (2019),

are incorrect.

The thesis consists of five chapters:
Chapter 1

This chapter is an introductory chapter. It contains definitions
and basic concepts that are used throughout this thesis. It is regarded
as a short survey of the basic needed material.

Chapter 2

The goal of this chapter is to obtain some new inequalities of
Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities via
fractional integrals for trigonometric p-convex functions. Furthermore,

we use the Riemann-Liouville fractional integral to present recent re-
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sults on fractional integral inequalities for trigonometric p-convex func-
tions. Also, we show that some results introduced by Hiiseyin Budak
[11], in (2019), are incorrect. Moreover, a counter example is given to

confirm our claim.

The results of this chapter are:

e under submission for publication.

Chapter 3

The purpose of this chapter is to get upper and lower estimates
for product of two hyperbolic p-convex functions, which is analogous
to Hermite-Hadamard type inequalities for product of two hyperbolic

p-convex functions.

The results of this chapter are:

e Accepted for publication in Italian Journal of Pure and Applied
Mathematics on August 3rd, 2021.

e Presented in the 3rd International Conference for Mathematics
and Its Applications, 2020.

Chapter 4

The aim of this chapter is to study the standard functional op-
erations of sub F-convex functions. Furthermore, we introduce a class
BE]a, b] of functions representable as a difference of two sub E-convex

functions.



