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Introduction

The convexity of functions plays a central role in many various fields,

such as economics, mechanics, biological system, optimization, and

other areas of applied mathematics. Throughout this thesis, let I be a

nonempty, connected, and bounded subset of R. A real valued function

f(x) of a single real variable x defined on I is said to be convex, if for

all u, v ∈ I and λ ∈ [0, 1], one has the inequality:

f(λu+ (1− λ)v) ≤ λf(u) + (1− λ)f(v). (1)

At the beginning of the 20th century, many generalizations of convex-

ity were extensively introduced and investigated in a number of ways

by numerous authors in the past and present. One way to generalize

the definition of a convex function is to relax the convexity condition

1(for a comprehensive review, see the monographs [41]).

As it is well known, the notion of the ordinary convexity can be

expressed in terms of linear functions. An important direction for gen-

eralization of the classical convexity was to replace linear functions by

another family of functions. For instance, Beckenbach and Bing [6], [7]

generalized this situation by replacing the linear functions with a fam-

ily of continuous functions such that for each pair of points p1(x1, y1)

and p2(x2, y2) of the plane there exists exactly one member of the fam-

ily with a graph joining these points.

More precisely, let {F (x)} be a family of continuous functions F (x)

defined on a real interval I then, a function f : I → R is said to be sub

F -function, if for any u, v ∈ I with u < v, there is a unique member

of {F (x)} satisfying

iv



INTRODUCTION

1. F (u) = f(u) and F (v) = f(v),

2. f(x) ≤ F (x) for all x ∈ [u, v].

The sub F -functions possess various properties analogous to those

of classical convex functions [6], [8], [7], [10]. For example, if f : I → R
is sub F -function, then for any u, v ∈ I, the inequality

f(x) ≥ F (x)

holds outside the interval (u, v).

Of course mathematicians were able before 1937 to generalize the

notion of convex functions [55], [56], [63]. In 1908, Phragmén and

Lindelöf (see, [55]) dealed with family of trigonometric functions. More

precisely, a function f : I → R is said to be trigonometrically ρ-

convex, if for any arbitrary closed subinterval [u, v] of I such that

0 < ρ(v − u) < π, the graph of f(x) for x ∈ [u, v] lies nowhere above

the unique ρ- trigonometric function, determined by the equation:

M(x) = M(x;u, v, f) = A cos ρx+B sin ρx,

where A and B are chosen such that M(u) = f(u), and M(v) = f(v).

Equivalently, if for all x ∈ [u, v]

f(x) ≤M(x) =
f(u) sin ρ(v − x) + f(v) sin ρ(x− u)

sin ρ(v − u)
.

Full details can be found in classic books [3], [46], [57], [58] or in the

monographs like [48].

In 2016, Ali [4] introduced the definition of hyperbolically p-convex

functions in the sense of Beckenbach. For particular choices of the

two-parameter family

F (x) = H(x) = A cosh px+B sinh px, p ∈ R \ {0},

where A and B are chosen such that H(u) = f(u) and H(v) = f(v)

which is known as sub H-function.

Actually, this class of functions has three names:

v
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• Sub H-functions in the sense of Beckenbach (see [6]), which have

been introduced and studied in 2016, by Ali see [4].

• Hyperbolically convex functions are have been suggested also by

Ali in 2016 [4] as they are analogous to the notion of trigonometri-

cally convex functions which have been considered by Phragmén

and Lindelöf (see [55]).

• Hyperbolic p-convex functions considered by Dragomir in 2018

(see [22]).

Currently, we choose hyperbolic p-convex functions as a name for

our class for two reasons

• First

The value of p can be used to distinguish between hyperbolic

p-convex functions and hyperbolic p-concave functions (see Ex-

ample 1.12.3).

• Second

To avoid ambiguity between hyperbolically convex functions in

non-Euclidean geometry and our class.

In 2016, Ali [4] introduced sub E-convex functions by dealing with

a family {E(x)} of exponential functions

E(x) = A expBx,

where A,B are arbitrary constants. More precisely, [4], [28] a positive

function f : I → (0,∞) is said to be a sub E-convex function on I, if

for all x ∈ [u, v] ⊂ I,

f(x) ≤ E(x)

where A and B are chosen such that E(u) = f(u) and E(v) = f(v).

Finally, in this thesis we study some properties of classes of gener-

alized convex functions which analogous to those of classical convex

functions. Furthermore, we established some new integral inequalities

of Hermite-Hadamard and Hermite-Hadamard-Fejér types. Also, we
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introduced a class BE[a, b] of functions representable as a difference of

two sub E-convex functions.
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Summary

The aim of this thesis is to

1- Discuss some classes of the generalized convex functions in the sense

of Beckenbach.

2- Study the main characterizations of sub E-convex functions.

3- Extend some properties and integral inequalities (such as: Hermite-

Hadamard, Hermite-Hadamard-Fejér, Ostrowski and Trapezoid, ...)

which are known for ordinary convex functions.

4- Show that some results introduced by Hüseyin Budak [11], in (2019),

are incorrect.

The thesis consists of five chapters:

Chapter 1

This chapter is an introductory chapter. It contains definitions

and basic concepts that are used throughout this thesis. It is regarded

as a short survey of the basic needed material.

Chapter 2

The goal of this chapter is to obtain some new inequalities of

Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities via

fractional integrals for trigonometric ρ-convex functions. Furthermore,

we use the Riemann-Liouville fractional integral to present recent re-
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sults on fractional integral inequalities for trigonometric ρ-convex func-

tions. Also, we show that some results introduced by Hüseyin Budak

[11], in (2019), are incorrect. Moreover, a counter example is given to

confirm our claim.

The results of this chapter are:

• under submission for publication.

Chapter 3

The purpose of this chapter is to get upper and lower estimates

for product of two hyperbolic p-convex functions, which is analogous

to Hermite-Hadamard type inequalities for product of two hyperbolic

p-convex functions.

The results of this chapter are:

• Accepted for publication in Italian Journal of Pure and Applied

Mathematics on August 3rd, 2021.

• Presented in the 3rd International Conference for Mathematics

and Its Applications, 2020.

Chapter 4

The aim of this chapter is to study the standard functional op-

erations of sub E-convex functions. Furthermore, we introduce a class

BE[a, b] of functions representable as a difference of two sub E-convex

functions.
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