

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سامية زكى يوسف

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

Prevalence of *OXA* carbapenemases genes in multidrug resistant *Acinetobacter* and *Pseudomonas* spp.

Thesis
Submitted for Partial Fulfilment of Master Degree in
Microbiology
By

Nermin Mahmoud Kamel Mohamed

(B.Sc. in Microbiology, Faculty of Science, Ain Shams University, 2011)

Supervisors

Prof. Khaled Zakaria El-Baghdady

Professor of Microbiology Microbiology Department, Faculty of Science, Ain Shams University

Prof. Iman Mohamed Amin El-Kholy

Consultant of Microbiology Ain Shams University Specialized Hospital, Ain Shams University

Prof. Gehan Mohamed Fahmy

Consultant of Infection Control, Clinical Pathology Ain Shams University Specialized Hospital, Ain Shams University

> Microbiology Department Faculty of Science Ain Shams University 2022

Approval sheet

Prevalence of OXA carbapenemases genes in multidrug resistant *Acinetobacter* and *Pseudomonas* spp.

Nermin Mahmoud Kamel Mohamed

Supervisors Approved

Prof. Khaled Zakaria El-Baghdady

Professor of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University

Prof. Iman Mohamed Amin El-Kholy

Consultant of Microbiology, Ain Shams Specialized Hospital, Ain Shams University

Prof. Gehan Mohamed Fahmy

Consultant of Infection Control, Clinical Pathology Ain Shams University Specialized Hospital, Ain Shams University

Examination committee

Prof. Abeer Ahmed Rushdy Mohamed

Professor of Microbiology Faculty of Women for Arts, Science and Education, Ain shams University.

Prof. Marwa Saad Mohammed Fathi

Professor of Medical Microbiology and Immunology Faculty of Medicine, Ain shams University.

Prof. Dr. Khaled Zakaria El-Baghdady

Professor of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University

Prof. Iman Mohamed Amin El-Kholy

Consultant of Microbiology, Ain Shams Specialized Hospital, Ain Shams University

Date of Discussion 22 / 06 /2022

Approval date //2022

University Council Approved / /202

ANNOUNCEMENT

This thesis has not been previously submitted for any degree.

Nermin Mahmoud Kamel

بسم الله الرحمن الرحيم

"قالوا سبحانك لاعلم لنا إلا ماعلمتنا إنك أنت العليم الحكيم"

صدق الله العظيم

سورة البقرة الآية (٣٢)

DEDICATION

I would like to dedicate this work to my authors for their efforts and assistance during the research period also beloved parents and brothers, my dear friend for their encouragement. Specially thanks to my dear husband for putting up with me and supporting me all through this work.

Nermin Mahmoud

ACKNOWLEDGMENT

First, I am deeply thankful to ALLAH for giving me everything I wish, strengthen and helping me to complete this work.

I would like to express my gratitude and appreciation to Prof. Dr. Khaled Zakaria, Professor of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University for his help and continuous support. He was best advisor, perfect in work and expert supervisor to bring this thesis to more than satisfactory finish.

My grateful and sincere thanks to Prof. Dr. Eman El Kholy consultant of Microbiology, Microbiology Department, specialized hospital, Ain Shams University, for her help, encouragement, continuous guidance, valuable comments, and constructive criticism which was a great asset for this work.

My deep thanks to my dear Gehan Fahmy, consultant of infection control, Microbiology Department, specialized hospital, Ain Shams University for her help, support, and friendly way in her supervision.

I would like to express my thanks to all of my friends, and colleagues for their encouragement and support.

LIST OF CONTENTS

Title	Page NO
1. Introduction	1
2. Literature Review	5
2.1. Site of infection	5
2.2 Antibiotics resistant	6
2.3. β-lactamase	10
2.4. OXA Extended-spectrum-lactamases	11
2.5. OXA groups in P. aeruginosa	12
2.6. OXA-type in A. baumannii	15
2.6.1. <i>OXA-23</i> -like –lactamases	16
2.6.2. $OXA-40/24$ -like β -lactamases	17
2.6.3 <i>OXA-51</i> -like β -lactamases	18
2.6.4 <i>OXA-58</i> -like β -lactamases	19
2.7. Formation of biofilm in A. baumannii	21
and P. aerginosa	
2.7.1 Biofim formation in <i>P. aeruginosa</i>	24
2.7.2 biofim formation in A. baumannii	25
2.8. Colistin	26
2.8.1. Mechanism of action to colistin	28
2.8.2. Resistance Mechanisms to colistin	29

3. Materials2	31
3.1.1 Isolates collection	31
3.1.2 Media	31
3.1.3Antibiotics	37
3.1.4 Chemicals and reagents	37
3.1.4 Biofilm formation	39
3.1.5 Vitek 2 cards	40
3.1.6 Kits for PCR	40
3.2 Methods	41
3.2.1 Clinical isolates and patient's data	41
3.2.2 Preliminary identification of clinical	41
isolates	
3.2.2.1 Growth on MacConkey agar	41
3.2.2.2 Microscopic examination of Gram-	42
stained smears	
3.2.2.3 Oxidase test	42
3.2.2.4 Carbohydrate fermentation and	42
hydrogen sulfide production by TSI Test	
3.2.2.5 Urea utilization test	43
3.2.2.6 Citrate utilization test	43
3.2.2.7 MIO reaction test	43
3.2.2.8 Methyl red (MR) test	44
3.2.2.9 Voges Proskauer test	44

3.2.3 Maintenance and preservation of clinical	44
isolate.	
3.2.4 Determination of minimum inhibitory	45
concentrations (MICs) of antibiotics	
3.2.4.1 Suspension Preparation	46
3.2.4.2 Inoculation	46
3.2.4.3 Card Sealing and incubation	47
3.2.4.4 Optical System	47
3.2.4.5 Test Reactions	47
3.2.4.6 Analytical techniques	48
3.2.5 Antibiotic susceptibility test	49
3.2.6 Genotypic detection of OXA genes	52
3.2.6.1 Preparation of DNA template	52
3.2.6.2 PCR primers	53
3.2.7 Method for biofilm formation	54
3.2.8 Determination of minimum inhibitory	55
3.2.8.1 MIC of colistin by VITEK 2	55
3.2.8.1.2 MIC of colistin using microtiter plate	55
4. Results	56
4.1 Collection of isolates' data	56
4.1.1. Percentage of gender and age in both	58
species	
4.1.2 Source of collected isolates	60

4.1.3 Types of clinical infection in relation to	62
isolates' gender	
4.1.4 Types of clinical infection according to	63
patients' age	
4.2. Different antibiotics using disc diffusion	65
method	
4.3. MIC of different antibiotics using Vitek 2	68
4.4. PCR results in <i>P. aeruginosa</i> and <i>A</i> .	73
baumannii	
4.5. Formation of biofilm both <i>P. aeruginosa</i>	74
and A. baumannii	
4.6. Relation between forming biofilm and	75
OXA genes in P. aeruginosa	
4.7. Relation between forming biofilm and	77
OXA genes in A. baumannii	
	-0
4.8. MIC of colistin for both <i>P. aeruginosa</i> and	79
A. baumanni	
Discussion	82
General Conclusion and Recommendations	
Summary	
References	
Arabic summary	

LIST OF TABLES

Title	Page NO
(1) Antibiotics on AST-N 22 cards, their	48
concentrations, and the range of MICs as	
provided by supplier (BioMerieux)	
(2) Standards of antibiotics susceptibility test	51
(3) Primers used for detection of OXA genes	53
by real time PCR	
(4) Isolates data (age, gender, department and	56
source of isolates	
(5) Biochemical tests for identification <i>P</i> .	58
aeruginosa and A. baumannii	
(6) Percentage of gender in <i>P. aeruginosa</i> and	59
A. baumannii	
(7) Percentage of clinical isolates distribution	61
among different isolation sites	
(8) Types of clinical infection according to	62
gender	
(9) Types of clinical infection according to age	64
(10) Antibiotic susceptibility of <i>P. aeruginosa</i>	66
from (1-25) and A. baumannii (25-50) clinical	

•	- 1	1 .
15	SO	lates

(11) MIC of different antibiotics which used to	69
detect resistant in <i>P. aeruginosa</i> and <i>A</i> .	
baumannii	
(12) Prevalence of OXA both P. aeruginosa	73
and A. baumanii	
(13) Prevalence of biofilm formation both <i>P</i> .	74
aeruginosa and A. baumannii	
(14) Relation between forming biofilm and	
OXA genes in P. aeruginosa	76
(15) Relation between forming biofilm and	78
OXA genes in A. baumannii	
(16) Susceptibility of isolates to colistin	80

LIST OF Figures

Title	Figures NO
(1) Mode of action for different	10
groups of antibiotics.	
(2) A, AST-N 22 cards and B, Vitek 2	45
system compact 15 used in the	
determination of MIC National Cancer	
Institute	
(3) Frequency of <i>P. aeruginosa</i> and <i>A.</i>	59
baumannii isolates according to patients' gender	r
(4) Frequency of P. aeruginosa and A. baumann	eii 60
isolates according to category age	
(5) Percentage of clinical isolates distribution	61
among different isolation sites	
(6) Types of clinical infection according to	63
gender	
(7) Types of clinical infection according to age	64
(8) MIC of different antibiotics which used to	72
detect resistant in <i>P. aeruginosa</i> and <i>A.</i>	
baumannii	
(9) Prevalence of OXA both P. aeruginosa and A	A. 73
baumanni	

(10) Prevalence of biofilm formation both <i>P</i> .	75
aeruginosa and A. baumannii	
Figure (11): the melt curve shows a TM about	
84°C in a single peak the absence of a non-	
specific amplified product	
(11) Relation between forming biofilm and <i>OXA</i>	77
genes in P. aeruginosa	
(12) Relation between forming biofilm and <i>OXA</i>	79
genes in A. baumannii	
(13) Susceptibility of isolates to colistin	80