

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سامية زكى يوسف

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

Aqueous extract of irradiated khella

Study on inhibition of Nanobacteria forming kidney stones by antibiotics, medicinal plants and gamma radiation

A Thesis

"Submitted for Degree of

Doctor Philosophy of Science in

Microbiology"

By

Nora Fayez Hassan Soliman Othman

M.Sc. Microbiology

Faculty of Science – Helwan University (2016)

Supervisors

Prof. Dr. Mohamed Khaled Ibrahim

Professor of Bacteriology, Faculty of Science, Ain Shams University

Prof. Dr. Hala Abd Allah Farrag

Professor of Medical Microbiology, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCCRT), Atomic Energy Authority, Egypt

Prof. Dr. Seham Yousef EL-Tablawy

Professor of Microbiology, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCCRT), Atomic Energy Authority, Egypt

Microbiology Department

Faculty of Science

Ain Shams University

Acknowledgement

First and foremost I owe my deepest gratitude to ALLAH whose great help was the only reason in accomplishing my thesis.

I would like to express my sincere thanks and my gratefulness to **Prof. Dr. Mohamed Khaled Ibrahim,** Professor of Bacteriology, Microbiology

Department, Faculty of Sciences, Ain Shams University, for his keen supervision and continuous encouragement throughout this work.

I deeply appreciate the effort of **Prof. Dr. Hala Abd Allah Farrag**, Professor of Medical Microbiology, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCCRT), Egyptian Atomic Energy Authority for her valuable time in the supervision during all stages of this work, suggestions, criticism, advice and helpful discussion in preparing this thesis.

My deepest thanks and gratitude for **Prof.Dr. Seham Yousef El Tablawy**, Professor of Microbiology, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCCRT), Egyptian Atomic Energy Authority who had supported me throughout the preparation of this thesis with patience and her encouragement, for his keen supervision, continuous cooperation, support to achieve this work.

My sincere thanks extend to **assistant prof. Marwa Abd el Hameed**, assistant professor of biochemistry, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCCRT), Egyptian Atomic Energy Authority for her help in dealing with rats and cooperation in this work.

My sincere thanks extend to all staff and members of the drug Microbiology laboratory, Drug Radiation Research Department at (NCCRT) for their sincere cooperation.

Nora Fayez Hassan

Dedication

To

My sincere thanks to my lovely mother, father and only sister Yasmina for their continuous support and encouragement.

Thanks and gratitude from my heart for my husband Mohamed El Gazzar, for his encouragement, tolerance and support.

To my life, my heart and the light of my eyes, to my lovely daughters Malak and Kenzy.

Thank you very much

Nora

Content S

Contents

Parameter	Page No.
List of Tables	1
List of Figures	4
List of Abbreviations	10
Abstract	13
1- Introduction	15
Aim of the work	24
2-Review of Literature	25
2.1. History of nanobacteria	25
2.2. Characters of nanobacteria	31
2.3. Eradication of nanobacteria	33
2.4. Nanobacteria and systemic diseases	35
1. Renal stone	36
2. Gall stones	40
3. Ovarian cancer	41
4. Breast cancer	41
5. Prostatic stones	41
6. Alzheimer disease	42
7. Oral diseases	42
2.5. Antinanobacterial factors	43
1- Antibiotics	43
2- Medicinal plants	46
Tribulus terrestris	49
❖ Ammi visnaga	50
Cymbopogon proximus	52

❖ Foeniculum vulgare Mill	52
Thymus Vulgaris	53
❖ Petroselinum crispum	55
❖ Anethum graveolens L	56
Azadirachta indica	57
❖ Salvia officinalis L	59
2.6. Antibacterial activities of the extracts	61
2.7. <i>In vivo</i> study	62
3-Materials and Methods	67
3.1. Kidney stones samples	67
3.1.1. Collection of samples	67
3.1.2. Preparation for further investigations	67
3.2. Chemical analysis of the collected stones using Fourier	
transforms infrared spectroscopy (FTIR)	67
3.3. Isolation and detection of nanobacteria	69
3.3.1. Isolation of nanobacteria.	69
3.3.2. Detection of nanobacteria	70
3.3.2.1. Naked eye detection (Macroscopic detection)	70
3.3.2.2. Detection of nanobacterial growth by	
spectrophotometer	71
3.3.2.3. Detection by Light Microscopy (Microscopic	
examination)	71
3.3.2.4. Urease production test	72
3.3.2.5. Detection by SEM and TEM	72
3.3.2.6.Detection by sodium dodecyl sulfate polyacrylan	nide
gel electrophoresis (SDS-PAGE) (pro	otein
electrophoresis)	74
3.3.2.7. Chemical analysis of nanobacteria using Four	ier
transforms infrared spectroscopy (FTIR) and EDX	
spectra	75
3.4. Qualitative determination of biofilm production by	
nanobacterial isolates	76

3.5. Quantitative determination of biofilm production by	
nanobacterial isolates using ELISA method	77
3.6. Molecular identification of nanobacterial isolate by PCR	_
technique	78
3.7. Antibiotic susceptibility patterns of the strongest nanoba	cterial
biofilm producers	80
3.8. Irradiation source	81
3.9. Medicinal plants and essential oils	82
3.9.1. Source of the medicinal plants	81
3.9.2. Microbiological quality of the choiced medicinal plan	nts 83
3.9.3. Preparation of aqueous and ethanolic extracts	84
3.9.4. Essential oils	85
3.10. Screening for the effect of medicinal plant extracts and	
essential oils on growth of the strongest nanobacterial biofilm	n
producers	85
3.11. Determination of Minimum inhibitory concentrations (MICs)
and (subMICs) of antinanobacterial agents on growth and bid	ofilm
formation of the strongest nanobacterial biofilm	
producers	86
3.12. Chemical composition of certain selected essential oils	using
GC-MS	
3.13. Combination treatment of antibiotics and medicinal pla	nt (the
most potent antinanobacterial agents) on strong biofilm	
producers	87
3.13.1. Effect on biofilm production	87
3.13.2. Effect on cellular materials	88
3.13.3. Effect on protein content	88
3.13.4. Effect on protein profile	90
3.13.5. Effect on nanobacterial ultrastructure	91
3.14. In vivo study: pathological effect of nanobacteria alone	and
in combination with antibiotics and medicinal	
plant	91
3.14.1. Experimental animals	91
3.14.2. Preparation of inoculum	92
3.14.3. Treatments.	92

3.14.4. Experimental design	92
3.14.5. Biochemical parameters investigated in serum	94
Determination of serum albumin, urea and creatining	ıe
level	94
3.14.6. Parameters measured in kidney	
homogenate	94
3.14.6.1. Preparation of homogenate	94
3.14.6.2. Determination of reduced glutathione (GS	H)
content	95
3.14.6.3. Determination of lipid	
1	95
3.14.6.4. Determination of nitrite	
content	
3.14.7. Histopathological examinations	
3.15. Statistical analysis of data	97
4- Results	98
	, 0
4.1. Collection of kidney stones	8(
4.2. Chemical analysis of the collected stones using fourtier	
transforms infrared spectroscopy (FTIR)	98
4.3. Isolation and Detection of nanobacteria)6
4.3.1. Isolation and naked eye detection)6
4.3.2. Detection of growth by spectrophotometer 1	08
4.3. 3. Detection by light Microscopy	10
4.3.4. Urease Production Test	11
4.3.5. Detection by SEM and TEM	112
4.3.6. Detection by sodium dodecyl sulfate polyacrylam gel electrophoresis (SDS-PAGE) (protein electrophoresis) 1	

4.3.7. Chemical analysis of nanobacteria using Fourie	r
transforms infrared spectroscopy (FTIR) and EDX spectra	121
4.4. Qualitative determination of biofilm production by nanobacterial isolates	125
4.5. Quantitative determination of biofilm production by nanobacterial isolates using ELISA method	126
4.6. Molecular identification of nanobacterial isolate by PCI technique	R 128
4.7. Antibiotic susceptibility patterns of the strongest nanobabiofilm producers	acteria
4.8. Microbiological quality of the tested medicinal plants	132
4.9. Screening for the effect of medicinal plant extracts and essential oils on growth of the strongest nanobacterial biofil producers	m 135
4.10. Determination of minimum inhibitory concentrations (and (subMICs) of the most effective antibiotics, extracts of medicinal plants and essential oils on growth and their effection biofilm formation of the strongest biofilm	
producers	139
1- Minimum inhibitory concentrations determination of most effective antibiotics	the 139
2- Minimum inhibitory concentrations of aqueous and ethanolic extracts of the most effective irradiated and non-irradiated medicinal plants	
3- Minimum inhibitory concentrations of the most effect	tive

4.11. Chemical composition of essential oils using GC-MS. 155
4.12. Combination treatment of antibiotic and medicinal plant (most potent antinanobacterial agents) on some strong biofilm producers
4.12.1. Effect on biofilm production
4.12.2. Effect on cellular materials
4.12.3. Effect on protein content
4.12.4. Effect on protein profile
4.12.5. Effect on nanobacterial ultrastructure using TEM
<i>In vivo</i> study
4.13. Biochemical results
4.13.1. Effect of different treatments on kidney relative weight of NB injected rat's kidney
4.13.2. Effect of different treatments on kidney function of NB injected rats
4.13.3. Assessment of oxidative stress parameters in kidney tissues
4.13.4. Histopathological examinations
5-Discussion
6-Summary. 239
7-Refernces
8- Arabic summary

List of Tables

List of Tables

Tables	Page No.
Table (1): Details of the medicinal plants	82
Table (2): Chemical analysis of the collected stones	99
Table (3): Number and percentage of kidney stones according to chemical analysis	100
Table (4): Detection of nanobacterial growth by spectrophotometer	109
Table (5): Frequency of Urolithiasis with different groups of age and gender	110
Table (6): Analysis of marker (lane M)	119
Table (7): Analysis of nanobacteria (lane NB)	120
Table (8): Quantitative determination of biofilm production	127
Table (9): Antibiotic susceptibility pattern of the strongest nanobacterial biofilm producers	131
Table (10): Bacterial and fungal counts of the tested medicinal plants as affected by different doses of gamma irradiation	134

List of Tables (cont.)

Tables	Page No.
Table (11): The effect of aqueous extracts of medicinal plants on growth of the strongest nanobacterial biofilm producers	136
Table (12): The effect of ethanolic extracts of medicinal plants on growth of the strongest nanobacterial biofilm producers	137
Table (13): The effect of essential oils on growth of the strongest nanobacterial biofilm producers	138
Table (14): Minimum inhibitory concentrations of the most effective antibiotics on growth of the strongest biofilm producers	140
Table (15): Effect of the most effective antibiotics with their sub MICs on biofilm formation of the strongest biofilm producers	142
Table (16): Minimum inhibitory concentrations of aqueous extracts of the most effective non-irradiated and irradiated medicinal plants on growth of the strongest biofilm producers	144
Table (17): Minimum inhibitory concentrations of EEs of the most effective irradiated medicinal plants on growth of the strongest biofilm producers	146
Table (18): Effect of aqueous extracts of the most effective non-irradiated and irradiated medicinal plants with their sub MICs on biofilm formation of the strongest biofilm producers	149
Table (19): Effect of EEs of the most effective irradiated medicinal plants with their sub MICs on biofilm formation of the strongest biofilm producers	150
Table (20): Minimum inhibitory concentrations of the most effective EOs on growth of the strongest biofilm producers	152