

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / حسام الدين محمد مغربي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

ملاحظات: لا يوجد

Ain Shams University Faculty of Engineering Irrigation and Hydraulics Department

MODELING FLOW BEHAVIOR OVER BUCKET SPILLWAY USING COMPUTATIONAL FLUID DYNAMICS

A Thesis

Submitted in partial Fulfillment of the Requirement for the Degree of **Doctor of PHILOSOPHY IN CIVIL ENGINEERING**

Submitted by Eng. Rusul Latteef Naji AL- Sfouk

B.Sc. in Water Resource Engineering, 2012, Faculty of Engineering, Baghdad University M.Sc. in Water Resource Engineering, 2016, Faculty of Engineering, Baghdad University

Supervisor

Prof. Dr. Hesham EL-Badry

Professor of Hydraulics Irrigation and Hydraulics Department Faculty of Engineering Ain-Shams University

Dr. Ahmed Ezzat Abd El-Rahaman

Assistant Professor of Mathematics Physics and Mathematics Department Faculty of Engineering Ain-Shams University

Cairo- Egypt 2022

Ain Shams University Faculty of Engineering

MODELING FLOW BEHAVIOR OVER BUCKET SPILLWAY USING COMPUTATIONAL FLUID DYNAMICS

A Thesis Submitted to the Faculty of Engineering
Ain Shams University for the Fulfillment of the Requirement of PhD. Degree in
Civil Engineering (Irrigation and Hydraulics Department)

Rusul Latteef Naji AL-Sfouk

B.Sc. in Water Resource Engineering, 2012, Faculty of Engineering, Baghdad University M.Sc. in Water Resource Engineering, 2016, Faculty of Engineering, Baghdad University

Supervisors

Prof. Dr. Hesham EL-Badry

Professor of Hydraulics Irrigation and Hydraulics Department Faculty of Engineering Ain-Shams University

Dr. Ahmed Ezzat Abd El-Rahaman

Assistant Professor of Mathematics Physics and Mathematics Department Faculty of Engineering Ain-Shams University

THESIS APPROVAL

EXAMINERS COMMITTEE SIG	SIGNATURE	
Prof. Dr.		
Prof.		
Prof. Dr.		
Prof.		
Ain Shams University, Cairo, Egypt.		
Prof. Dr Hesham EL -Badry		
Professor of Professor of Hydraulics		
Irrigation and Hydraulics Department, in Ain-Shams Univ	ersity	
Dr. Ahmed Ezzat Abd El-Rahaman		
Assistant Professor of Mathematics		
Physics and Mathematics Department in Ain-Shams University		

Date: ---/2022

STATEMENT

This dissertation is submitted to Ain Shams University,

Faculty of Engineering for the degree of PhD. in Civil

Engineering.

The work included in this thesis was carried out by the

author in the department of Irrigation and Hydraulic, Faculty

of Engineering, Ain Shams University, from November 2018

to March 2022.

No part of the thesis has been submitted for a degree or

a qualification at any other University or Institution.

Date:- ---/2022

Signature:- -----

Name:- Rusul Latteef Naji AL- Sfouk

Researcher Data

Name : Rusul latteef Naji AL-Sfouk

Date of birth : 6-10- 1989

Place of birth : Baghdad governorate

Last academic degree : M.Sc. in Water Resource Engineering

Field of specialization : Water Resource Engineering

University issued the degree : Baghdad University

ACKNOWLEDGMENT

Gratitude is due to merciful generous God that guided me throughout this work.

Deep gratitude and sincere thanks are to be expressed to *Prof. Dr. Hesham EL-Badry*, Professor of Environmental Water Resources in Irrigation and Hydraulics Department Faculty of Engineering Ain-Shams University, for his kind guidance and continuous encouragement throughout this work and for his help and patience during the preparation of this study. Without his assistance, this investigation would have never been realized.

Thanks are due to *Dr. Ahmed Ezzat*, Assistant Professor of Mathematics, Physics and Mathematics Department, Faculty of Engineering Ain-Shams University, for his constant assistance and valuable advice throughout this study and for his valuable supervision, so as active help during this investigation.

Gratitude is to be extended to the staff members of Ain Shams, who assisted me to accomplish my thesis.

بسنم الله الرَّحْمَن الرَّحِيم الرَّحْمَنُ (١) عَلَّمَ الْقُرْآنَ (٢) حَلَقَ الإِنْسَانَ (٣) عَلَّمَهُ الْبَيَانَ (٤) الشَّمْسُ وَالْقَمَرُ بحُسنبَانِ (٥) وَالنَّجْمُ وَالشَّجَرُ يَسنْجُدَانِ (٦) وَالسَّمَاءَ رَفْعَهَا وَوَضَعَ الْمِيزَانَ (٧) أَلَا تَطْغَوْا فِي الْمِيزَانِ (٨)

صدق الله العظيم

DEDICATION

This work took a period from my life. I wish to dedicate it to whom suffered to educate, prepare, build capacity and help myself to be as I am,

To my beloved mother and beloved father

To my beloved husband

Finally to

My main supervisor

"Who opened for me the path of scientific research with freedom of thought"

ABSTRACT

Spillway associated with flip bucket structure is considered as an effective evacuation tool in dam structural components. Huge destructive flood can be dissipated safely through this structure. Poor geometrical, structural and hydraulic design of this structure may cause serious damage followed by failure in the dam's stability.

The main aim of the study was orientated to introduce practical proposed modifications to avoid the critical damage zones in a real ogee spillway flip bucket structure. Proposed solutions were calibrated and assessed based on the numerical simulation process using computational fluid dynamics (CFD). Optimum modification was classified according to its high ability in dissipating the dangerous flood energy away from the dam's body. Disposed hyper flood was carried to safe qualified location to ensure the downstream stability.

This main aim was preceded by an initial another aim of assessing the most reliable turbulent model in simulating this multiphase flow type. Four different turbulent models were examined such as: standard k-epsilon model (SKE), realizable k-epsilon model, renormalization group model (RNG) and detached eddy simulation model (DES). The multiphase water-air flow process was simulated using volume of fluid (VOF) method. The ANSYS FLUENT software was used in simulation analysis.

Results of each turbulent model were compared with results of physical (or experimental) model. Several physical models were investigated for ogee spillway and flip bucket individually and in other combined case. Multiple

comparing criteria of flow profiles, velocity values, and pressure values were examined. Detached eddy simulation (DES) process achieves the most reliable results for all cases.

Subsequently, DES was used for the main analysis of the damage simulation analysis and its modifications. Several constraint modifications of path curvature and its inclination angle were examined. Successful geometrical adjustment was developed for solving the damage problem.

List of Contents

ABSTRACT	
List of Contents	
List of Figures	
List of Tables	
CHAPTER (1): Introduction	
1.1Problem Definition	
1.2 Research Objectives	
1.3 Research Methodology	
1.4 Thesis Layout	
CHAPTER (2): Literature Review	6
2.1 Spillways	6
2.2 Ogee Spillway (OG)	14
2.3 Flip bucket (FB):	17
2.4 Computational Fluid Dynamics (CFD):	
2.4.a Advantages of Using CFD	
2.4.b. Previous Investigation Efforts	20
2.5. Theoretical Background	22
2.5.1 .Computational Fluid Dynamics (CFD)	22
2.5.2. Governing Equations	22
2.5.3. Multiphase Numerical Models	23
2.5.3.a Volume of Fluid Model (VOF)	
2.5.3.b. Mixture Model	_
2.5.3.c Eulerian Model	
2.6. Turbulence Modelling	
2.7 Implemented Turbulence Models	30
2.7.a Standard K-ε Model (SKE)	
2.7.b The RNG k- ε Model (RNG)	
2.7.c Realizable k- ε Model (RKE)	
2.7.d Detached Eddy Model (DES)	
2.8 Boundary Conditions	
2.9 Mesh Generation	34
CHAPTER (3): Eatimating Reliable Turbulent Model in Simulating Flow	20
Over Ogee Spillway	36
3.1 Investigation Procedure	
3.2 Synopsis About (ogee spillway)	
3.3 Physical Model	
3.4 Mathematical Formulation	
3.5 Model Development	39
3.6 Results and Analysis	
3.6.a Water Surface Profile (W.L)	
3.6.b Static Pressure (SP)	
3.6.c Results Comparison	5 /

3.7 Discussions	59
3.8 Afterword	61
CHAPTER (4): Assessing Reliable Turbulent Model in Simulating Flip	
Bucket spillway	
4.1 Investigation Procedure	62
4.2 Synopsis About Flip bucket spillway	62
4.3. Case Study (A)	
4.4. Numerical Modeling Approach	
4.5 Model Geometry and Discretization	
4.6 Model Boundary Conditions	66
4.7. Numerical Simulations and Results of case study (A)	67
4.8 Empirical Estimation of Throw Distance	83
4.9. Results Analysis and Discussion of Case Study (A)	
4.9.1. Jet Velocity	
4.9.2. Throw Distance Results	
4.10. Case Study (B)	90
4.11. Results and Analysis of Case study (B)	
4.12. Throw Distance by Dynamic Pressure	97
CHAPTER (5): Assessing Proposed Spillway Modifications by Detached	
Eddy Simulation Turbulence Model	100
5.1 Investigation Procedure	
5.2 collecting data(field data) and simulating Cambambe spillway:	
5.3 Definition of the Problem	
5.3. Base case Analysis	
5.4 Proposed Modifications To Limit Damages (Proposed Solutions):	
5.5 Simulating Cambambe With The Proposed Solutions:	
5.5.A. The flip bucket angle and radius of curvature results:	
5.5.B. Changing the slope of the chute results:	
5.5.C. Changing the slope of the chute and flip bucket angle results:	
5.6. Afterword	
CHAPTER(6):Inferential Investigation	
6.1 Conclusions	
6.2 Recommendations REFERENCES	
REFERENCES	

List Of Figures

Figure (2.1). Ogee spillway	9
Figure (2.2). Chute spillway	9
Figure (2.3).Side channel spillway	10
Figure (2.4). Tunnel / Shaft spillway	10
Figure (2.5).Siphon spillway	11
Figure (2.6).Free over –fall spillway	11
Figure (2.7).Stepped spillway	12
Figure (2.8).Labyrinth spillway	12
Figure (2.9) OG crest profile	15
Figure (2.10) Kavsak Dam Modelling by Serife Y. 2014	16
Figure (2.11) Empirical method of Kawakami	19
Figure (2.12) Results of Hurtig 'K. et al, 2013	19
Figure (3.1): Ogee spillway Geometrical dimensions	38
Figure (3.2). The ogee spillway crest design	
Figure (3.3): Model meshing by triangle method.	40
Figure (3.4): Boundary condition for 2D model.	40
Figure (3.5). The flow profile for SKE turbulent model for case 1	42
Figure (3.6). The flow profile for RNG turbulent model for case 1	42
Figure (3.7). The flow profile for RKE turbulent model for case 1	43
Figure (3.8). The flow profile for DES turbulent model for case 1	43
Figure (3.9). The flow profile for SKE turbulent model for case 5	44
Figure (3.10). The flow profile for RNG turbulent model for case 5	44
Figure (3.11). The flow profile for RKE turbulent model for case 5	45
Figure (3.12). The flow profile for DES turbulent model for case 5	45
Figure (3.13). The velocity profile for SKE turbulent model for case 1	46
Figure (3.14). The velocity profile for RNG turbulent model for case 1	46
Figure (3.15). The velocity profile for RKE turbulent model for case 1	47
Figure (3.16). The velocity profile for DES turbulent model for case 1	47
Figure (3.17). The velocity profile for SKE turbulent model for case 5	48
Figure (3.18). The velocity profile for RNG turbulent model for case 5	48
Figure (3.19). The velocity profile for RKE turbulent model for case 5	49
Figure (3.20). The velocity profile for DES turbulent model for case 5	49
Figure (3.21) Water surface profile at different ogee spillway locations case no.	1.50
Figure (3.22) Water surface profile at different ogee spillway locations case no.	2.51
Figure (3.23) Water surface profile at different ogee spillway locations case no.	3.52
Figure (3.24) Water surface profile at different ogee spillway locations case no.	4.53
Figure (3.25) Water surface profile at different ogee spillway locations case no.	5.54

Figure (3.26) Numerical and experimental static pressure results for case no. 1 (H/
Hd =1.2)55
Figure (3.27) Numerical and experimental static pressure results for case no. 2 (H/
Hd =1)55
Figure (3.28) Numerical and experimental static pressure results for case no. 3 (H/
Hd =0.75)56
Figure (3.29) Numerical and experimental static pressure results for case no. 4 (H/
Hd =0. 5)56
Figure (3.30) Numerical and experimental static pressure results for case no. 5 (H/
Hd =0.25)56
Figure (3.31) Correlation factor results for water level and static pressure58
Figure (3.32) Average absolute simulated error of water level and static pressure58
Figure (3.33) Standard deviation of absolute simulation error for water level and
static pressure58
Figure (4.1) The experimental flume and flip bucket dimensions64
Figure (4.2): Geometrical model properties66
Figure (4.3):Boundary conditions of spillway flip bucket model66
Figure (4.4). Flow profile from phase contour obtained for SKE model68
Figure (4.5). Flow profile from phase contour obtained for RNG model68
Figure (4.6). Flow profile from phase contour obtained for RKE model69
Figure (4.7). Flow profile from phase contour obtained for DES-KW-SST model
(case no.1, Q=0.22m3/s)69
Figure (4.8). Flow profile from phase contour obtained for DES-RKE model (case
no.1, Q=0.22m3/s)70
Figure (4.9). Flow profile from phase contour obtained for SKE model70
Figure (4.10). Flow profile from phase contour obtained for RNG model71
Figure (4.11). Flow profile from phase contour obtained for RKE model71
Figure (4.12). Flow profile from phase contour obtained for DES-KW-SST model
(case no.2, Q=0.13m3/s)
Figure (4.13). Flow profile from phase contour obtained for DES-RKE model
(case no.2, Q=0.13m3/s)
Figure (4.14). Flow profile from phase contour obtained for SKE model (case
no.3, Q=0.07m3/s)73
Figure (4.15). Flow profile from phase contour obtained for RNG model73
Figure (4.16). Flow profile from phase contour obtained for RKE model74
Figure (4.17). Flow profile from phase contour obtained for DES-KW-SST model
(case no.3, Q=0.07m3/s)74
Figure (4.18). Flow profile from phase contour obtained for DES-RKE model
(case no.3, Q=0.07m3/s)75
Figure (4.19). Velocity profile obtained from SKE model (Case 1, Q=0.22m3/s).75
Figure (4.20). Velocity profile obtained from RNG model (Case 1, Q=0.22m3/s).76