

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / حسام الدين محمد مغربي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

ملاحظات: لا يوجد

EFFECT OF IN OVO IODIDE INJECTION AND THERMAL MANIPULATION ON SOME IMMUNOPHYSIOLOGICAL TRAITS OF BROILER CHICKS

By

OMNIA SHAWKY MOHAMMED IBRAHIM

B.SC. Agric. Sc. (Animal and Poultry Production) Fac. of Agric., Alexandria Univ. (2008)M.Sc. Agric. Sc. (Poultry Physiology), Fac. of Agric., Damanhour Univ. (2014)

A Thesis Submitted in Partial Fulfillment Of The Requirements for the Degree of

in
Agriculture Sciences
(Poultry Physiology)

Department of Poultry Production Faculty of Agriculture Ain Shams University

Approval Sheet

EFFECT OF IN OVO IODIDE INJECTION AND THERMAL MANIPULATION ON SOME IMMUNOPHYSIOLOGICAL TRAITS OF BROILER CHICKS

By

OMNIA SHAWKY MOHAMMED IBRAHIM

B.SC. Agric. Sc. (Animal and Poultry Production) Fac. of Agric., Alexandria Univ. (2008)M.Sc. Agric. Sc. (Poultry Physiology), Fac. of Agric., Damanhour Univ. (2014)

This thesis for Ph.D. degree has been approved by:	
Dr. Abd El- Hamid El-Sayed Abd El- Hamid	••
Dr. Ayman Mohamed Hassan Ahmad Prof. of Poultry Physiology, Faculty of Agriculture, Ain Shams University.	••
Dr. Marwa Shaban Sayed Abdo Associate Professor of Poultry Physiology, Faculty of Agriculture Ain Shams University.	· • • •
Dr. Ibrahim El-Wardany El- Sayed Prof. Emeritus of Poultry Physiology, Faculty of Agriculture, Ain	••

Date of Examination: 9/6/2022

Shams University.

EFFECT OF IN OVO IODIDE INJECTION AND THERMAL MANIPULATION ON SOME IMMUNOPHYSIOLOGICAL TRAITS OF BROILER CHICKS

By

OMNIA SHAWKY MOHAMMED IBRAHIM

B.SC. Agric. Sc. (Animal and Poultry Production) Fac. of Agric., Alexandria Univ. (2008)M.Sc. Agric. Sc. (Poultry Physiology), Fac. of Agric., Damanhour Univ. (2014)

Under the supervision of:

Dr. Ibrahim El-Wardany El-Sayed.

Prof. Emeritus of poultry physiology, Department of poultry production, Faculty of Agriculture, Ain Shams University. (Principal Supervisor).

Dr. Alaa Elsayed Ali Elkomy

Professor of Poultry Physiology, Head of Livestock Department, Arid Lands Research Institute, City for Scientific Research and Technology Applications (CSRTA).

Dr. Marwa Shaban Sayed Abdo.

Associate Professor of Poultry Physiology, Department of Poultry Production, Faculty of Agriculture, Ain Shams University.

ABSTRACT

Omnia Shawky Mohamed Ibrahim: Effect of In Ovo Iodide Injection and Thermal Manipulation on Some Immunophysiological Traits of Broiler Chicks. Unpublished Ph.D. thesis, Department of poultry production, Faculty of Agriculture, Ain Shams University, 2022.

A total of 400 hatching eggs of Ross 308 broiler breeders were numbered and weighed (average 65±0.5g.) then incubated at 99.8°F and 55% R.H. At the 7th day of incubation eggs were candled and infertile eggs were excluded then fertile eggs were distributed into 3treated groups (130 eggs/treatment) as follows; C: un-injected eggs (control); and two injected groups with 50 and 100 μl/egg of 0.9 % nano-I (T1 and T2, respectively). The hatched chicks were reared in caged wire floor battery in a controlled environmental room with 23-hour light/ day with luminous intensity 10 lux, for 5 weeks experimental period. The environmental temperature was about 32° C during the first week old and it was gradually reduced by about 2° C weekly until about 24° C at the fourth week up to the end of experiment. At 3rd days age of age chicks were subjected to thermal manipulation (TC) at 38±1 C° for 6 hours for three consecutive days (from 3rd to 5th day of age) from 10 A.M. to 4 P.M.

Embryonic mortality, hatchability, chick quality and some anatomical parameters in broiler chickens were investigated. The body weight gain, feed consumption and feed conversion ratio were recorded weekly. At the last week of the experimental period (5th wk.), birds were weighed and slaughtered by cutting the jugular veins of the neck according to the Islamic religion instruction with a sharp knife. The body internal organs were weighed. Some blood constituents were determined. Histological observation was done on thyroid, intestine, thymus and bursa.

Results showed highly significant increase in the total embryonic mortality especially during the mid-stage of incubation (8 to 18 days) in Nano-I-injected groups compared with control groups. Similar trend was recorded in hatchability percentage.

Tona score was significantly higher in control 94% compared with 92% in sham and 84% in nano-I injected eggs. While chick weight, chick length and yolk free body mass % (YFBM%) had no significant differences between all treatments.

Some anatomical observations were noted among the treatments. Duodenum, pancreas, thymus, spleen, and bursa of Fabricius were more developed in chicks that hatched from 50 μ l/egg nano-I group compared with those injected by 100 μ l/egg Nano-I and control groups and this is very evident in the thyroid glands.

The results indicated that there was a significant effect of the Iodine treatments and the thermal conditioning on the live body weight of 35 day of age (DOA) broiler chickens.

The thyroid hormones T_3 and T_4 affected significantly by the Iodine doses as their levels in the plasma increased by Iodine dose 50 and 100 μ l/egg. There wasn't any significant effect of the Iodine doses on the different blood constituents.

It is concluded that, More studies are needed to determine the optimal dose of Nano-I for in Ovo injection in broiler chickens.

Key words: *In Ovo* injection, nano iodine, embryonic mortality, hatchability, chick quality, broiler chickens, thermal conditioning, blood constituents, T₃ hormone and thyroid.

ACKNOWLEDGEMENTS

I'm greatly appreciate the help and support by my principle supervisor **Dr. Ibrahim El-Wardany El-Sayed Hassan,** Professor of Poultry Physiology, Department of Poultry Production, Faculty of Agriculture, Ain Shams University, Egypt, for his keen supervision, encouragement, valuable criticism, suggesting the problem, planning the work, moral assistance during the course of my study and for preparing and reviewing the manuscript to be in the best final form.

Appreciation is also due to **Dr. Alaa Elsayed Ali Elkomy**, Professor of Poultry Physiology, head of Livestock Department, Arid Lands Research Institute, City for Scientific Research and Technology Applications (CSRTA), Alexandria, Egypt, for his valuable criticism, reviewing manuscript and moral assistance for suggesting the problem, planning the work, sincere help, keen supervision and reviewing the manuscript.

I wish to express my deepest appreciation to **Dr. Marwa Shaban Sayed Abdo** Associate Professor of poultry physiology, Department of poultry production, Faculty of Agriculture, Ain Shams University. For her keen supervision and encouragement during the experimental work and writing of this thesis.

My deep gratitude and appreciation are extended to **Dr. Faisal Badri** Associate Professor and **Abdelhamid Ahmed Abdelhamid** teaching assistance of poultry physiology, Department of poultry production, Faculty of Agriculture, Ain Shams University. For their unlimited help in providing facilities.

My best gratitude and appreciation are extended to the soul of my lovely Mother, my father, my Husband, my sons and all my family members for their tender care, moral, inspiration during the tenure of study and for their patience and encouragement until finishing of this work.

CONTENTS

	Page
LIST OF TABLES	III
LIST OF FIGURES	IV
LIST OF ABBREVIATION	VII
INTRODUCTION	1
REVIEW OF LITERATURE	4
1.Nano Technology In Poultry	4
1.1Definition Of Nano Technology	4
1.2Nano Materials Types	4
1.3. Mechanism Of Nano Particles Action	5
1.4. Application Of Nanotechnology In Poultry Industry	5
1.4.1 in Broilers Sector.	5
1.4.2 in Chicken Embryos.	8
2.Thyroids	10
2.1. Anatomy, Embryology, And Histology Of Thyroid	
Glands	10
2.2. Thyroid Hormones	12
2.2.1. Synthesis, Release, And Circulating Concentrations Of	
Thyroid Hormones	12
2.2.2. Mechanism Of Action Of Thyroid Hormones	17
2.2.3. Thyroid Hormone Activation And Degradation	19
2.2.4. Effect Of Thyroid Hormones	21
2.2.4.1. Thyroid Hormone Effects On Development	21
2.2.4.2. Thyroid Hormone Effects On Metabolism And	
Thermoregulation.	23
2.2.4.3. Thyroid Hormone Effects on Reproduction And	
Maternal Influences On Developing Young	25
3. Embryology Of Avian Chicks	27
4. Early Thermal Manipulation In Broilers	29
4.1. Early Postnatal Thermal Conditioning	29
4.2. Effect Of Early Postnatal Thermal Conditioning On	29

4.2.1. Chick Performance	29
4.2.2. Carcass Composition	31
4.2.3. Blood Metabolic Hormones	32
4.2.4. Blood Biochemical Analysis	33
4.2.5. Lymphoid Organ Relative Weights	34
MATERIAL AND METHODS	35
1. Type of Nano-Iodine	35
2. Experimental Design	35
3.Experimental Treatment Groups	35
4. Injection Procedure	36
5. Time of Injection	37
6. Site of Injection	37
7. Early Thermal Manipulation	37
8. Data Collections	38
8.1. Live Body Weight, Feed Consumption And Feed	
Conversion Ratio	38
8.2. Blood Samples Collection	38
8.3. Organs Samples Collection	38
8.4. Blood Biochemical Constituents	39
8.5. Determination Of T3 Hormone	39
8.6. Histological Examination	39
9. Statistical Analysis	40
RESULTS AND DISCUSSION	42
1. The Breakout Analysis (Embryonic Traits)	42
2.The Intestinal Measurements	48
3.Internal Organs Weight	51
4.The Body Weight Gain	51
5.Blood Chemical Constitutes	58
Histology Results	64
SUMMARY	73
REFERENCES	77

LIST OF TABLES

Гable	Title	Page
1	Effect of in Ovo nano Iodine injection on embryonic mortality rate and hatchability % in broiler chickens.	45
2	Effect of in Ovo nano Iodine injection on incubation period duration (hours), Tona score, Chick weight (g), Chick length (cm) and YFBM %.	46
3	Effect of early thermal conditioning and in ovo injection of nano iodine on some intestinal measurements at 35 DOA in broiler chicken.	49
4	Effect of early thermal conditioning and in ovo injection of nano iodine on some internal organs weight at 35 DOA in broiler chicken.	53
5	Effect of early thermal conditioning and in ovo injection of nano iodine on some internal organs weight at 35 DOA in broiler chicken.	54
6	Effect of early thermal conditioning and in ovo injection of nano iodine on body weight gain in broiler chicken.	55
7	Effect of early thermal conditioning and in ovo injection of nano iodine on over all body weight gain in broiler chicken.	56
8	Effect of early thermal conditioning and in ovo injection of nano iodine on some Blood chemical constitutes: at 35 DOA in broiler chicken.	57
9	Effect of early thermal conditioning and in ovo injection of nano iodine on some plasma parameters at 35 DOA in broiler chicken.	60
10	Effect of early thermal conditioning and in ovo injection of nano iodine on thyroid activity at 35 DOA in broiler chicken.	61
11	Effect of early thermal conditioning and in ovo injection of nano iodine on some plasma parameters at 35 DOA in broiler chicken.	62
12	Effect of early thermal conditioning and in ovo injection of nano iodine on thyroid activity at 35 DOA in broiler	
	chicken.	63

LIST OF FIGURES

Figure		Page
1	Avian thyroid glands.	12
2	Thyroid hormones and their deiodination pathways	
	leading to thyroid hormone activation and	
	inactivation.	13
3	Thyroid hormone mechanism of action resulting in	
	gene repression in the absence of T ₃ and activation	
	of gene transcrip- tion in the presence of T ₃	18
4	Air cell was detected under candling and marked	
	by pencil, then the embryo position was determined	
	depended on the site of embryo eyes and the	
	position was circled by pencil.	41
5	Air cell was pierced at about 2:3 mm from the edge	
	of air cell over the embryo position	41
6	Indian ink was injected to ensure that needle was	
	penetrated the amnion sac.	41
7	Illustrated a few embryos with bruises plus	
	hematoma (arrowhead) caused by accidentally	
	damaged with syringe needle during in ovo	
	injection with 100 µl/egg nano-I into the amnion	
	sac at 7 DOI.	47
8	Illustrated a normal embryo with no accidentally	
	damaged by syringe needle during in ovo injection	
	in amnion sac at 7 DOI in most embryos in all	
	treatments.	47
9	Illustrated the dyed embryos of un-hatched eggs 50	
	a 100 µl/egg nano-I groups appeared normal	
	developed in later stage of incubation.	47

10	Illustrated Duedenum, pancreas (1), gall blader (2),	
	spleen (3),thymus (4) and bursa were larger and more	
	develped in 50 µl/egg (a and b) and 100 µl/egg nano-	
	I (c and d) group compared with controls (e and f).	50
11	Histology of Duodenum of the control group at 35	
	DOA	65
12	Histology of bursa of Fabricious of the control group	
	at 35 DOA.	65
13	Histology of thymus gland of the control group at 35	
	DOA.	66
14	Histology of Thyroid gland in ovo injection with 50	
	μl nano iodine group	66
15	Histology of Duodenum of the in ovo injection with	
	50 μl nano iodine group at 35 DOA	67
16	Histology of thymus gland of the in ovo injection	
	with 50 µl nano iodine group at 35 DOA.	67
17	Histology of bursa of Fabricious of the in ovo	
	injection with 50 µl nano iodine group at 35 DOA.	68
18	Histology of Duodenum of the in ovo injection with	
	100 μl nano iodine group at 35 DOA.	68
19	Histology of bursa of Fabricious of the in ovo	
	injection with 100 µl nano iodine group at 35 DOA.	69
20	Histology of Duodenum of the control group at 18	
	ED	69
21	Histology of huma of Eshairing of the control angua	
21	Histology of bursa of Fabricious of the control group	70
	at 18 ED	70
22	Histology of Duodenum of the the in ovo injection	
	with 50 µl nano iodine at 18 ED	70
23	Histology of Thyroid gland in ovo injection with 50	
4 3	μl nano iodine group gland at 18 ED	71
	MI Hand todine group grand at 10 DD	/ 1

24	Histology of bursa of Fabricious of the in ovo	
	injection with 50 µl nano iodine at 18 ED	71
25	Histology of Duodenum of the in ovo injection with	
	100 μl nano iodine at 18 ED	72
26	Histology of bursa of Fabricious of the in ovo	
	injection with 100 µl nano iodine group at 18 ED	72

LIST OF ABBREVIATIONS

Abbreviations Descriptions

% Percent Ag silver

ALT Alanine amino transferase
AST Aspartate amino transferase

BWG Body weight gain

C control

Co Celsius degree.

Cu copper DOA Day of age

DOI Day of incubation
ED Embryonic day
Fahrenheit degree

FCR Feed conversion ratio

FI Feed intake

Gram g hr Hour hrs Hours I **Iodine** Kg Kilogram Milligram mg Micro liter μl min minute

NRC National research council

P Phosphorus

P value Probability level

SAS Statistical Analysis System
SEM Standard error of the mean

Se Selenium

T₃ TriiodothyronineT₄ tetraiodothyronine

TC Thermal conditioning.

WOA Week of age.

VCR Villi height/crypt depth ratio