

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / حسام الدين محمد مغربي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

ملاحظات: لا يوجد

ECOFRIENDLY BIODEGRADATION OF SYNTHETIC DYES

By

SAMAR AL REFAEY ABDELSALAM AHMED

B.Sc. Agric. Sc. (Agric. Microbiology), Fac. of Agric., Ain Shams Univ., 2010 M.Sc. Agric. Sc. (Agric. Microbiology), Fac. of Agric., Ain Shams Univ., 2017

A Thesis Submitted in Partial Fulfillment Of The Requirements for the Degree of

in
Agricultural Sciences
(Agricultural Microbiology)

Department of Agricultural Microbiology Faculty of Agriculture Ain Shams University

Approval Sheet

ECOFRIENDLY BIODEGRADATION OF SYNTHETIC DYES

By

SAMAR AL REFAEY ABDELSALAM AHMED

B.Sc. Agric. Sc. (Agric. Microbiology), Fac. of Agric., Ain Shams Univ., 2010 M.Sc. Agric. Sc. (Agric. Microbiology), Fac. of Agric., Ain Shams Univ., 2017

This thesis for Ph.D. degree has been approved by:

Dr.	Wafaa Mohamed Abd El-Rahim Researcher Prof. of Environmental Microbiology, Agricultural and Biological Research Institute, National Research Centre (NRC).
Dr.	Rawia Fathy Gamal Prof. Emeritus of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University.
Dr.	Khadiga Ahmed Ahmed Abou-Taleb Prof. of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University.
Dr.	Abd El-Wahab Mohamed Abd El-Hafez Prof. Emeritus of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University.

Date of Examination: / / 2022

ECOFRIENDLY BIODEGRADATION OF SYNTHETIC DYES

By

SAMAR AL REFAEY ABDELSALAM AHMED

B.Sc. Agric. Sc. (Agric. Microbiology), Fac. of Agric., Ain Shams Univ., 2010 M.Sc. Agric. Sc. (Agric. Microbiology), Fac. of Agric., Ain Shams Univ., 2017

Under the supervision of:

Dr. Abd El-Wahab Mohamed Abd El-Hafez

Prof. Emeritus of Agricultural Microbiology, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Khadiga Ahmed Ahmed Abou-Taleb

Prof. of Agricultural Microbiology, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University.

Dr. Samah Hashem Abo-Hussein

Lecturer of Agricultural Microbiology, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University.

ABSTRACT

Samar Al-Refaey Abdelsalam "Ecofriendly biodegradation of synthetic dyes" Unpublished Ph.D. Thesis, Department of Agric. Microbiology. Faculty of Agriculture, Ain shams University, 2022.

The present study aimed to apply the microbial technique to decolorize and detoxify dye. Decolorization of mono-azo dyes (reactive red 189 (RR189), reactive orange 13 (RO13), and reactive violet 5 (RV5)), di-azo dyes (reactive black 5 (RK5) and (reactive blue 172 (RB172)), and anthraquinone dye (reactive blue 19 (RB19)) by 239 microbial isolates (176 bacterial isolates and 63 fungal isolates) isolated from contaminated soil and effluent samples. Among 239 dyes decolorizing microbial isolates, ten isolates (35RB, 2GB, 15VB, 2GF, 1VF, 16KB, 7KF, 15NB, 7NF, and 5BF) were chosen as the most efficient dyes decolorizing isolates, with dyes removal concentrations ranging from 57.00 to 95.80 ppm. The germination of broccoli (Brassica oleracea var. italic) and lettuce (Lactuca sativa var. capitata) seeds were examined for the toxicity of tested dyes and 10 microbial dyes metabolites. According to the data, dye metabolites are not toxic to plants. Out of ten dye decolorizing isolates, two pioneer fungal isolates (5BF and 7KF) were chosen as having the highest percentage of RB172 or RK5 dyes decolorization and seed germination. These isolates were identified to be phenotypically and genotypically identical to Aspergillus flavus 5BF and Aspergillus niger 7KF, respectively, and were accredited in GenBank as Aspergillus flavus isolate MICSR2021 (accession no. OM681337) and Aspergillus niger strain MICR2021 (accession no. OM681337) (accession no. ON010743). Thin-layer chromatography revealed that these strains were aflatoxins-free. After 72 hours of incubation, these A. flavus isolate MICSR2021 and A. niger isolate MICR2021 strains degraded RB19 or RK5 dyes in a medium containing mannitol or glycerol as carbon sources and NH₄Cl or NH₄NO₃ as nitrogen sources. Laccase and manganese peroxidase (MnP) activities were found to be active during dye decolorization by tested strains. Furthermore, metabolites produced by the treatment of RB172 or RK5 dyes with *A. flavus* and *A. niger* were analyzed using gas chromatography-mass spectrometry. Cyclohexene, 1,3,5-triazine-2,4-diamine-6chloro-N-ethyl, and 2,4-di-tert-butylphenol were the RB172 metabolites. RK5 metabolites included benzene, 1,3,5-trimethyl, 1,3,5-triazine-2,4-diamine, 6-chloro-N-ethyl, and 7,9-di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione. In a pot experiment, fungal metabolites were applied in the agricultural field to improve the vegetative growth of the faba bean (*Vicia faba*). The results revealed that the fungal metabolites were not toxic to the plant and increased plant growth parameters (root length, root dry weight, shoot length, shoot dry weight, and leaves number per plant) as water treatment (control).On the other hand, dyes were harmful to the growth of plants.

The *A. flavus* and *A. niger* strains were safe when removing dye from a synthetic medium with high efficiency, and their metabolites had no negative influence on the environment.

Keywords: Aspergillus flavus, Aspergillus niger, Biodegradation, Decolorization, Degrading enzymes, Phytotoxicity, Synthetic dyes and GC-MS.

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to **Prof. Dr. Abdelwahab Abdelhafez,** Emeritus Prof. of Microbiology, Agric. Microbiology Dept., Faculty of Agriculture, Ain Shams University for his kind supervision, guidance, valuable help, continuous support and encouragement, precious advices, and useful discussion during the study.

I deeply thank to **Prof. Dr. Khadiga Ahmed Ahmed Abou-Taleb**, Prof. of Microbiology, Agric. Microbiology Dept., Faculty of Agriculture, Ain Shams University for her motivation, enthusiasm, useful discussion during the study and continuous help during the study and during writing up the manuscript.

Special thanks to **Dr. Samah H. Abo-Hussien,** Lecturer of Microbiology, Agric. Microbiology Dept., Faculty of Agriculture, Ain Shams University, for her kind supervision. I would gratefully acknowledge her valuable support and technical advice, during the study.

I deeply thank to **Dr. Hala Badr Khalil**, Associate Prof. of Genetics, Genetics Dept., Faculty of Agriculture, Ain Shams University for the great help and facilitation.

Sincere thanks are also extended to all my colleagues and staff members of the Microbial Inoculants center (MIC), Faculty of Agriculture, Ain Shams University for providing facilities and encouragement.

I would like to express sincere thanks to all members of Agric., Microbiology Dept., Faculty of Agriculture, Ain Shams University, for their help and providing facilities during this work.

CONTENTS

	Page
LIST OF TABLES	\mathbf{V}
LIST OF FIGURES	VII
LIST OF ABBREVIATIONS	
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	4
2.1. Dyes	4
2.2. Classification of synthetic dyes	5
2.2.1. According to chemical structure	5
2.2.1.1. Azo dyes	5
2.2.1.2. Anthraquinone dyes	6
2.2.1.3. Indigo dyes	6
2.2.1.4. Phthalocyanine dyes	6
2.2.1.5. Sulfur dyes	7
2.2.1.6. Nitro and nitrous dyes	7
2.2.2. According to the techniques of application	7
2.2.2.1. Reactive dyes	7
2.2.2.2. Disperse dyes	8
2.2.2.3. Acid dyes	8
2.2.2.4. Basic dyes	9
2.2.2.5. Direct dyes	9
2.2.2.6. Vat dyes	10
2.2.2.7. Metal complex dyes	10
2.3. Dyes negative impact in many environments	10
2.4. Dye wastewater treatments	12
2.4.1. Chemical treatment process	13
2.4.2. Biological treatment process	14
2.5. Mechanisms of microorganisms dye degradation and	
decolorization	15
2.5.1. Bacterial dye degradation and decolorization	15
2.5.2. Fungal dye degradation and decolorization	16

	Page
2.5.3. Algae dye degradation and decolorization	19
2.5.4. Phytoremediation	20
2.6. Factors affecting on decolorization and dye degradation	
by microorganisms	20
2.6.1. Carbon source	20
2.6.2. Nitrogen source	22
2.6.3. Mineral nutrients	23
2.6.4. pH level	23
2.6.5. Temperature	24
2.6.6. Agitation and Aeration	25
2.6.7. Initial dye concentration	26
2.7. Toxicity of dyes and their degradation products	27
2.7.1. Seed germination assay (phytotoxicity)	28
2.7.2. Microbial toxicity	29
2.8. Gas chromatography mass spectrometry (GC-MS)	29
3. MATERIALS AND METHODS	31
3.1. Sampling	31
3.1.1. Collection of synthetic dyes	31
3.1.2. Collection of soil and effluent samples	31
3.2. Chemical analysis of soil used in application pot	
experiment	31
3.3. Media used	33
3.4. Plant seeds	35
3.5. Agro-industrial wastes and by-products	35
3.6. Isolation of dyes degrading microorganisms	36
3.7. Maintenance of cultures	37
3.8. Standard inoculum	37
3.8.1. The standard bacterial inoculum	37
3.8.2. The standard fungal inoculum	37
3.9. Screening of the most efficient dyes degrading	
microorganisms	37

	Page
3.10. Phytotoxicity assay of dyes and microbial cell-free	
supernatant	38
3.11. Dye decolorization batch culture	38
3.12. Dye decolorization determination	39
3.13. Phenotypic and molecular identification of the most	
dyes decolorizing fungal isolates	39
3.13.1. Phenotypic identification	39
3.13.2. Molecular identification	39
3.14. Detection of produced aflatoxins	40
3.15. Enhancement of dyes decolorization by the pioneer	
strains using a classical method as one-factor at-a-time	40
3.15.1. Carbon sources	40
3.15.2. Nitrogen sources	41
3.16. Determination of enzymatic activities	41
3.16.1. Laccase activity	41
3.16.2. Manganese peroxidase (MnP) activity	41
3.17. Gas chromatography-mass spectrometry (GC-MS)	
analysis of RB19 and RK5 dyes and decolorized	
products	42
3.17.1. Extraction of degradation products of RB19 and RK5	
dyes	42
3.17.2. GC/MS system	42
3.18.Application of decolorized dyes on growth parameters	
of faba bean (Vicia faba)	42
3.19. Statistical analysis	44
4. RESULTS AND DISCUSSION	45
4.1. Isolation of dye degrading microbial isolates	45
4.2. Screening for the most efficient isolates decolorizing	
dyes in broth medium	49
4.2.1. Single-azo dyes group	49
4.2.2. Di-azo dyes group	53

	Page
4.2.3. Anthraquinone dye group	55
4.3. Time course of dyes decolorization by the selected	
fungal and bacterial isolates	58
4.4. Toxicity assay (phytotoxicity)	66
4.5. Identification of the most efficient dye decolorizing	
fungal isolates	71
4.6. Detection of aflatoxins	82
4.7. Enhancement of RK5 and RB19 dyes decolorization by	
the tested strains using one-factor at-a-time technique	83
4.7.1. Carbon sources	83
4.7.2. Nitrogen sources	86
4.8. Evaluation of degrading enzymes	87
4.9. Analysis of dyes and decolorized products using GC-	
MS	90
4.9.1. Analysis of RB19 dye and decolorized products	90
4.9.2. Analysis of RK5 dye and decolorized products	91
4.10.Application of decolorized dyes on growth parameters	
of faba bean (Vicia faba)	98
5. SUMMARY	103
6. REFERENCES	108
APPENDIX	
ARABIC SUMMARY	