

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / حسام الدين محمد مغربي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

ملاحظات: لا يوجد

Ain Shams University
Faculty of Engineering
Power & Electrical machines Dept.

A Novel Technique for Rotor Side Converter Protection in Doubly Fed Induction Generators

A Thesis
Submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy
In Electrical Engineering

Submitted by\
Ahmed Mohamed Khaled Mohamed

Supervised by\
Prof. Dr. Almoataz Y. Abdelaziz

Electrical Power & Machines Department Faculty of Engineering Ain Shams University

Prof. Dr. Hadi El_Helw

Electrical and Control Department
Faculty of Engineering
Arab Academy for Science, Technology and Maritime Transport

Dr. Mohamed Ezzat

Electrical Power & Machines Department Faculty of Engineering Ain Shams University

Statement

This thesis is submitted to Faculty of Engineering, Ain Shams

University in partial fulfillment of the requirements for the Doctor of

Philosophy Degree in Electrical Engineering. The work included in this

thesis is carried out by the author at Faculty of Engineering, Ain Shams

University. No part of this thesis has been submitted for a degree or a

qualification at any other university or institute.

Name: Ahmed Mohamed Khaled Mohamed

Signature:

/

Date:

/2022

1

Researcher Data

Ahmed Khaled was born in Egypt in 1983 and received my bachelor degree in electrical engineering from faculty of engineering (Shoubra), Benha university, Cairo, Egypt and a master degrees in the same field from the Arab Academy for Science, Technology and Maritime Transport, Cairo, Egypt, in 2006 and 2013, respectively.

I posses more than 15 years of progressive experience in the engineering field from both design and maintenance point of view at Omega Co, Mantrac, Egypro FME & JLL. Most recently, my responsibilities as Facilities manager at JLL are to manage & lead various O&M activities in HSBC head office and some branches.

Thesis abstract

Recently, wind energy is considered as one of the most important energy resources and the growing share of the wind energy in the electrical grids made many countries introduced new grid codes to identify the responsibilities and rights of the wind farms during all grid conditions.

Nowadays, the Doubly Fed Induction Generator (DFIG) becomes one of the most popular generators in variable wind turbine systems. The DFIG has the advantages of; low cost, low weight, and high efficiency. However, one of its main disadvantages is its sensitivity to the voltage dips. Therefore, there are various techniques were developed to protect the DFIG and enhance its performance during the faults so as to meet the grid codes requirements.

In this thesis, DFIG theory was discussed along with its control techniques, also various protection techniques of the DFIG were discussed and their advantages and disadvantages are highlighted.

Two novel proposed techniques in protecting DFIG's Rotor Side Converter (RSC) are presented and discussed. To evaluate the behavior of the new proposed protection schemes, a network consisting of a 2MW wind turbine connected to an infinite bus bar via a 0.69 /20 kV transformer is considered using EMTDC/PSCAD software. A 3-phase to ground fault with different levels at the high voltage side of the transformer is introduced at different generator speeds. The results showed a noticeable enhancement in the DFIG performance when the proposed techniques are applied specially regarding rotor current and DC link voltage which have a direct effect on RSC and its components.

Acknowledgment

I must first thank Allah for his prosperity in completion this thesis despite of some hard times.

Special thanks for my beloved mother, who gave me a great help and support to accomplish this work.

I would like also to thank my supervisors Prof. Dr. Almoataz Y. Abdelaziz, Prof. Dr. Hadi Elhelw and Dr. Mohamed Ezzat for their contentious support, guidance and assistance.

Table of Contents

Statement	1
Researcher data	2
Abstract	3
Acknowledgment	4
Table of Contents	5
List of Figures	9
List of Tables	12
List of Symbols	13
List of Abbreviations	15
1. Chapter 1 - Introduction	
1.1 Thesis Objective.	16
1.2 Thesis Outlines.	17
2. Chapter 2 - Background and Literature Survey of Wind Energy	
Systems	
2.1 Introduction.	18
2.2 Wind Energy Status and Challenges	19
2.3 Wind Power Conversion Basic Theory	21
2.4 Main Components of Wind Turbine.	26
2.5 Wind Turbine Basic Operational Characteristics	27
2.6 Power and Speed Control Methods of Wind Turbines	29
2.6.1 No Speed Control	29
2.6.2 Yaw/tilt Control	29
2.6.3 Pitch Control	29
2.6.4 Passive Stall Control	30
2.6.5 Active Stall Control.	30
2.6.6 Safety Brake	31
2.7 Wind Turbine Systems	31

	2.7.1 Fixed Speed Wind Turbine	3
	2.7.2 Variable speed wind turbine.	3
	2.7.3 Variable Speed Wind Turbine With (DFIG)	3
	2.8 Grid Code Requirements Of Wind Turbines	3
	2.9 Summary	3
3.	Chapter 3 - Doubly Fed Induction Generator (DFIG)	
	3.1 Introduction.	3
	3.2 DFIG Theory of operation.	3
	3.3 DFIG Modes of operation	4
	3.3.1 Super-Synchronous Mode	4
	3.3.2 Sub-Synchronous Mode	4
	3.4 Control of DFIG.	4
	3.4.1 Vector Control.	4
	3.4.1.1 Vector Control of the RSC	4
	3.4.1.2 Vector Control of the GSC	4
	3.4.2 Direct Control of DFIG.	4
	3.5 Protection Systems Of DFIG During Voltage Dips	4
	3.5.1 DFIG During Voltage Dips	4
	3.5.2 DFIG Protection Techniques	4
	3.5.2.1 Braking Chopper Technique	4
	3.5.2.2 Changing Control Strategy Technique	4
	3.5.2.3 Crowbar Technique	4
	3.5.2.4 Dynamic Braking Resistor (DBR) Techniques	5
	3.5.2.5 Rotor Bypass Resistors Technique	5
	3.5.2.6 Demagnetizing Current Injection Technique	5
	3.5.2.7 Series Grid Side Converter (SGSC) Technique	4
	3.5.2.8 Replacement Loads Technique	5
	3.6 Summary	6

4 Chapter 4 - Two novels proposed protection techniques and their simulation

	Filter based TCR technique	61
	Simulation Plan	62
	DFIG behavior with various voltage levels and 0.7 pu rotor speed with	
	filter based TCR	63
	DFIG behavior with various voltage levels and 0.7 pu rotor speed	
	without protection technique	68
	DFIG behavior with various voltage levels and 1 pu rotor speed with	
	filter based TCR	72
	DFIG behavior with various voltage levels and 1 pu rotor speed	
	without protection technique	76
	DFIG behavior with various voltage levels and 1.2 pu rotor speed with	
	filter based TCR	80
	DFIG behavior with various voltage levels and 1.2 pu rotor speed	
	without protection technique	84
	Fixed Filter Technique	88
	DFIG behavior with various voltage levels and 0.7 pu rotor speed with	
	Fixed Filter Technique	92
	DFIG behavior with various voltage levels and 1 pu rotor speed with	
	Fixed Filter Technique	96
	DFIG behavior with various voltage levels with Fixed Filter	
	Technique at 1.2 pu rotor speed	100
	Simulation Summary Table	101
	Simulation Summary and Comment	102
	Summary	102
5	Chapter 5 - Conclusion and Future Work	
C	onclusion	104

Future Work	105
List of publications	106
References	107
Appendix A DFIG model	112
Arabic abstract	113