

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / حسام الدين محمد مغربي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

ملاحظات: لا يوجد

TGFb immunohistochemical expression in cancer associated fibroblasts in urinary bladder carcinoma

Thesis Submitted for fulfillment of M.D in Pathology

By

Noha Helmy Ghanem

M.B.B.Ch, MSc of Pathology

Supervisors

Prof.Dr. Nafissa Mohammed Amin El-Badawy

Professor of Pathology

Faculty of Medicine, Ain Shams University

Prof. Dr. Sahar Saad El Din

Professor of Pathology

Faculty of Medicine, Ain Shams University.

Prof. Dr. Iman Hamed Mostafa Hewedi

Professor of Pathology

Faculty of Medicine, Ain Shams University

Prof.Dr. Lobna Sadek Shash

Professor of pathology

Faculty of Medicine, Ain Shams University

Faculty of medicine

Ain Shams University

<u>Acknowledgement</u>

I wish to express my profound gratitude and sincere thanks to Almighty Allah His magnificent help is the first factor in everything we can do in our life.

I am overwhelmed in all humbleness and gratefulness to acknowledge my depth to all those who have helped me to put these ideas into something concrete.

It is a genuine pleasure to express my deep sense of thanks and gratitude to my supervisor Prof. Dr. Nafissa El-Badawy professor of pathology, Faculty of Medicine, Ain Shams University. Her dedication and keen interest above all her overwhelming attitude to help her students had been mainly responsible for completing my work. Her timely advice, meticulous scrutiny, scholarly advice and scientific approach have helped me to a very great extend to accomplish this task.

I would like to express my appreciation and sincere gratitude to Prof Dr. Sahar Saad El Din professor of pathology. Faculty of Medicine, Ain Shams University, for her continuous efforts, advice, patience and continuous constructive criticism throughout this thesis and during publication.

I would like to express my deep and sincere gratitude to my research supervisor Prof Dr. Iman Hamed Mostafa Hewedi professor of pathology, Faculty of Medicine, Ain Shams University. Her invaluable guidance throughout this research, dynamism, vision, sincerity and motivation had deeply inspired me.

I'd like to thank Ass. Prof. Dr. Lobna Sadek Shash, Assistant professor of pathology. Faculty of Medicine. Ain Shams University, for her timely suggestions with kindness, enthusiasm, dynamism, patience, technical skilful supervision and encouragement had

	Title index	pages
<i>1</i>)	List of abbreviations	I
<i>2</i>)	List of figures	IV
<i>3</i>)	List of tables	VI
<i>4</i>)	List of diagrams	VII
<i>5</i>)	Introduction	1
6)	aim of the work	3
<i>7</i>)	Review of literature	4
	Embryology	4
	Role of transforming growth factor-B (TGF-B) during bladder	4
	development	4
	Urinary bladder carcinoma:	4
	Epidemiology	4
	Risk factors	5
	Classifications of Urinary Bladder Urothelial Carcinoma	6
	A) Pathological classification WHO classification	6
	Urothelial carcinoma: Pathogenesis Non invasive urothelial carcinoma	8
	Invasive urothelial carcinoma	9
	B) Molecular classification	1,5
	Squamous cell carcinoma	15
	Risk factors	18
	Grading of squamous cell carcinoma	18
	Staging of urinary bladder carcinoma	19
		19
	Seed and soil crosstalk	20
	The seeds: tumor stem cells feature	21
	The soil: Tumor microenvironment	21
	Role of TME in carcinogenesis	21
	Cancer associated fibroblasts (CAFs)	22
	Markers of CAFs	22
	Origin of CAFs	24
 -	Transforming Growth Factor- B	25
	Structure and secretion	25
	Activation	26
	Mechanism of action of TGF-B	26
		L

\overline{S}	ignificance of TGF-B in Oncogenesis	27
I)	Interaction with the seed (cancer cell)	27
	The SMAD pathway is one of the most important pathways	
	involved in TGF-B1 functions	
II)	Interaction with the soil (tumor microenvironment)	28
	 Interaction of TGF-B1 with CAFs 	28
	• Interaction of TGF-B1 with tumor immune	29
	microenvironment (TIME) key players	29
III)	Role of TGF-B1 in angiogenesis	<i>30</i>
IV)	Role of TGF-B1 in epithelial-mesenchymal transdifferentiation (EMT)	30
V)	Role of TGFB in cancer metastasis:	31
VI)	Role of TGF-B in cancer metabolism	
Estab	olished role of TGF-B in some cancers	32
	Role of TGF-B1 in Urinary Bladder Carcinoma (UBC)	32
	Role of TGF-B in Serous Ovarian Cancer	<i>32</i>
	Role of TGF-B in Prostate Cancer	<i>32</i>
	Targeting TGF-B in cancer treatment	32
Target	ting TGF-B in cancer treatment	32
TGF-I	B pathway inhibitors	
8) Mater	rial and methods	34
9) Resul	lts	40
10)Discu	ussion	63
11)Sumn	nary	<i>67</i>
12)Conclusion		69
13)Recommendations		70
14)Refer	rences	71
15)Arabi	ic summary	1

List of Abbreviations

AJCC	American Joint Committee on Cancer
AMH	anti-mullerian hormone
APC	Antigen representing cell
APOBEC	Apolipoprotein B mRNA editing enzyme
ASK1	apoptosis signal-inducing kinase 1
BMPs	bone morphogenic proteins
CAFs	Cancer associated fibroblasts
CDKN2A	cyclin-dependent kinase inhibitor 2A
CIS	Carcinoma in situ
coSMAD	the common SMAD
CSCs	cancer stem cells
CTGF	connective-tissue growth factor
DAB	Diaminobenzidine
EAU	European Association of Urology
ECM	extracellular matrix
EGFR	epidermal growth factor receptor gene
ELF3	E74-like ETS transcription factor 3
EMT	Epithelial-to-mesenchymal transition
EndMT	endothelial-mesenchymal transition
ERCC2	excision repair cross-complementing rodent repair
	deficiency, complementation group 2
FAP	Fibroblast activation protein
F.E	Fisher's exact test
FGFR3	fibroblast growth factor receptor 3
FSP-1	Fibroblast specific protein-1
GCO	Global Cancer Observatory
GDFs	growth and differentiation factors

GIT	Gastrointestinal tract
H&E	Haematoxylin and eosin
HER2	human epidermal growth factor receptor 2
HG	High grade
HIER	Heat-induced epitope retrieval
HIF1	hypoxia-inducible factor 1
IHC	Immunohistochemistry
IFNγ	Interferon gamma
ISUP	International Society of Urological Pathology
iTregs	induced Tregs
IUC	Invasive urothelial carcinoma
JNK	the Jun amino-terminal kinase
KD	Kilo Dalton
KDM6A	lysine-specific demethylase 6A
LAB	Labeled avidin–biotin
LAP	latency associated peptide
LDL	Low-density lipoprotein
LP	Lamina propria
LTBP	Latent TGF-B-Binding Protein
LLC	larger complex called Large Latent Complex
MIBC	muscle invasive urinary bladder carcinoma
MM	Muscularis mucosa
MMP	matrix metalloproteases
MP	Muscularis propria
NCCN	National Comprehensive Cancer Network
NIP LG	Noninvasive papillary Low Grade urothelial
NIP HG	Carcinoma Noninvasive papillary high grade

NMIBC	Non-muscle invasive urinary bladder carcinoma
NPV	Negative predictive value
NSCs	normal stem cells
OS	overall survival
PBS	Phosphate buffer saline
PCR	Polymerase chain reaction.
PI 3-kinase	Phosphoinositide 3-kinase
PMN	pre-metastasis niches
PPV	Positive predictive value
PUNLM	Papillary Urothelial Neoplasm of Low Malignant Potential
PTC	papillary thyroid carcinoma
PyMT	polyoma middle T
RAF	Rapidly Accelerated Fibrosarcoma.
RAS	Rat sarcoma virus
R-SMAD	receptor regulated SMAD
ROC	Receiver operating characteristic
r	Spearman's rho
Rb	retinoblastoma protein
RT-PCR	Reverse transcription polymerase chain reaction
S	Significant
SLC	Small Latent Complex
SCC	Squamous cell carcinoma
SD	Standard deviation
SMA	Smooth muscle actin

Smads	abbreviation refers to the homologies to the		
(or	Caenorhabditis elegans SMA ("small" worm		
SMADs)	phenotype) and MAD family ("Mothers Against Decapentaplegic") of genes in Drosophila.		
SPSS	Statistical Package for the Social Sciences		
SNPs	single-nucleotide polymorphisms		
TGFB-	Transforming growth factor beta		
<i>TGFb</i>			
TGF-B			
TGFBRI	TGF-B receptor I		
TME	Tumor microenvironment		
TSP-1	thrombospondin-1		
t- test	Student t test		
TURBT	Transurethral resection		
UBC	cancer of the urinary bladder		
UC	Urothelial carcinoma		
VEGFC	vascular endothelial growth factor		
WHO	World health organization		
X2	Chi square		

List of Figures

Figure No.	Title	Page No.
Figure 1:	PUNLMP	10
Figure 2:	low-grade papillary urothelial carcinoma	10
Figure 3:	high-grade papillary urothelial carcinoma	10
Figure 4:	A case of invasive urothelial carcinoma with squamoid differentiation showing strong expression of TGF-B1 in both the tumor cells as well as the CAFs (IHC x100).	49
Figure 5:	A closer view to the previous case to show strong nuclear expression of TGF-B1 in the tumor cells as well as cytoplasmic and membranous (IHC x200).	49
Figure 6:	High grade urothelium carcinoma show nuclear and cytoplasmic expression of TGF-B1 (IHC x200).	50
Figure 7:	moderate to strong cytoplasmic expression of TGF-B1 in low grade invasive papillary urothelial carcinoma (H&E 400).	50
Figure 8:	squamous cell carcinoma cells are negative to TGF-B1 but shielding themselves by CAFs which strongly express TGF-B1 (H&E 100).	51
Figure 9:	a case of invasive urothelial carcinoma with strong cytoplasmic expression of TGF-B1 with membranous accentuation (IHCx400)	51
Figure 10:	urothelial carcinoma with cystitis glandularis (H&E 100).	52
Figure 11:	urothelial carcinoma with cystitis glandular is showing strong expression to TGF-B1 (IHC 100).	52
Figure 12:	a case of papillary urothelium carcinoma the cells show cytoplasmic and membranous accentuation to TGF-B1. The basement membrane is highlighted in contrast to negative fibroblasts in the core (H&E 100).	53

Figure 13:	the expression of TGF-B1 is mainly cytoplasmic in contrast to negative fibroblasts (IHCx200)	53
Figure 14:	A case of noninvasive urothelial carcinoma showing TGF-B1 stain in cytoplasmic and membranous in contrast to negative fibroblasts in the core (IHCx100).	54
Figure 15:	A case of noninvasive urothelial carcinoma showing TGF-B1 staining the cytoplasm with membranous accentuation as well as the fibroblasts in the core (IHCx100).	54
Figure 16:	carcinoma insitu with strong expression of TGF-B1 in tumor cells (IHCx40).	55
Figure 17:	carcinoma insitu with membranous expression of TGF-B1 in tumor cells (IHCx100).	55
Figure 18:	High grade urothelial carcinoma invading thick bundle of muscularis propria A:(H&Ex200) B: (IHCx200)	56
Figure 19	A ball of the tumor cells invading the muscularis propria is showing moderate membranous expression of TGF-B1 in contrast to robust expression of the CAFs shield (IHCx 200).	56
Figure 20:	A case of urothelial carcinoma where the tumor cells as well as the CAFs show expression of TGF-B1 during invading the muscularis propria. Also, the blood vessel is shielded by CAFS strongly expressing TGF-B1 (IHCx 200).	57
Figure 21:	A case of urothelial carcinoma A: infiltrating the fat (H&Ex100) B) showing spatial distribution of TGF-B1. Here the expression was stronger in the growing boundery towardes the infiltrated fat (IHCx100)	57
Figure 22:	A case of urothelial carcinoma where expression of TGF-B1 in CAFs was associated with necrosis. The tumor cells are positive as well A: H&E X100 ,B: IHC X100	58
Figure 23:	A case of urothelial carcinoma associated with bilharziasis showing positive expression of TGF-B1 in CAFs and the tumor cells as well A: H&E 200, B: IHC 400.	58

List of Tables

Table No.	Title	pages
Table I:	Variants of urothelial carcinoma: clinical, pathological, and molecular features	11
Table II:	Molecular subtypes of non-muscle invasive bladder cancer and their main features	15
Table III:	Molecular subtypes of muscle invasive bladder cancer (MIBC) and their main features	16
Table IV:	TNM staging of urinary bladder carcinoma	19
Table (V):	Markers of CAFs	24
Table VI:	Clinicopathological parameters	40
Table VII:	Correlation between the TGF-B1 expression in CAFs with all pathological parameters	42
Table VIII:	localization of TGF-B1 expression in cancer cells	46
Table IX:	Correlation between the TGF-B1 in tumor with the pathological parameters:	46
Table X	Correlation between the immunohistochemistry marker in tumor and fibroblasts	47

List of diagrams

Diagram No.	Title	page
Diagram 1:	Overview of staging of tumors arising from the urinary bladder, diverticulum, and urachal remnants	20
Diagram 2:	Tumor microenvironment showing representative cell types, tissues, and signaling factors involved	23
Diagram 3:	Origins of cancer-associated fibroblasts in the tumor microenvironment (TME) and role in cancer progression	23
Diagram 4:	latent TGF-B1 complexes	26
Diagram 5:	Summary of the effects of TGFB at the microenvironment level.	31
Diagram 6:	represent the significant difference with tumor type being highly expressed in all tumor subtypes except TCC without any specific differentiation	43
Diagram 7:	Represent high expression TGF-B1 in CAFs was significantly associated with higher stage	44
Diagram 8:	Represent high expression TGF-B1 in CAFs was significantly associated with higher grade urothelial carcinoma	44
Diagram 9:	Represent high expression of TGF-B1 in CAFs was significantly associated with presence of bilharziasis	45
Diagram 10:	Represent high expression TGF-B1 in CAFs was significantly associated with necrosis	45
Diagram 11:	Represent there was difference between expression of TGF-B1 in CAFs and tumor cell	48

ABSTRACT

BACKGROUND: Urinary bladder carcinoma (UBC) is one of the most common malignancies in Egypt and all over the world. Transforming growth factor beta (TGFB) levels in plasma and urine were proved to connote predictive and prognostic attributes in UBC patients. Furthermore, Cancer-associated fibroblasts (CAFs) are, now, recognized as a key player in carcinogenesis. Yet, TGFB1 expression in CAFs of UBC had not been elucidated. Moreover, TGFB1-targeted therapy is now emerging with potential benefits for TGFB1 expressing cancers.

AIM OF THE STUDY: We dedicated this study to explore potential implications of TGFB1 immunohistochemical expression in CAFs of UBC by correlating it to relevant clinical and pathological data.

MATERIALS AND METHODS: This retrospective study included 48 UBC specimens. Different tumor grades were presented in balanced groups. TGFB1 immunohistochemical expression was evaluated, categorized as low or high and compared in CAFs among different UBC grades, statistical analysis of the results was then followed.

RESULTS: TGFB1 expression in CAFs was significantly different among tumor histologic types (p = 0.01), high tumor grade (p \leq 0.01), presence of muscle invasion (p \leq 0.001), higher tumor stage (p = 0.01), presence of preceding bilharziasis (p = 0.003), and necrosis (p = 0.03). There was a highly significant difference between TGFB1 expression in both tumor cells and CAFs (p = 0.002). Intense CAFs TGFB1 staining was also strikingly observed along the muscle invading frontside of UBC cells further emphasizing the pivotal role of CAFs expressing TGFB1 in invasion.

CONCLUSION: This study demonstrates significant predictive implications of TGFB1 in UBC, thus emphasizing its potential benefits in management and therapy.

Keywords: Transforming growth factor beta1; Urinary bladder cancer; Cancer-associated fibroblast; Cancer-associated fibroblasts; Immunohistochemistry.

Introduction

Urinary bladder cancer (UC) is the 10th most common form of cancer worldwide with an estimated 573,000 new cases and 213,000 deaths of all sites in both sexes in 2020 according to Global Cancer Observatory (GCO). In Egypt, according to GCO, UC is ranking the 3rd most common cancer after liver and prostatic cancers in both sexes of all ages in 2020. The number of new cases in Egypt in 2020 in both sexes and all ages is 10655/134632 representing 7.9% of all cancers (**Sung et al., 2021**).

More than 95% of bladder tumors are of epithelial origin. The urothelial neoplasms are the most common type followed by squamous and glandular neoplasms (**Humphrey et al., 2016**).

Cancer cells can't survive nor grow without hospitable microenvironment. This tumor microenvironment (TME) is an active participant in tumorigenesis rather than passive observer. It consists mainly of resident cells, secreted growth factors, and extracellular matrix proteins (Bhowmick et al., 2004). Recognition of TME concept had revolutionized cancer treatment modalities (Hainaut et al., 2013).

Fibroblasts association with cancer cells attain special phenotype and are called carneer associated fibroblasts (CAFs). CAFs are usually derived from the resident fibroblasts in the