

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / حسام الدين محمد مغربي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

ملاحظات: لا يوجد

The Effect of Different Remineralizing Agents on Restored Demineralized Enamel: An In vitro Comparative Study

A Thesis Submitted to the Operative Dentistry Department,
Faculty of Dentistry, Ain Shams University
in Partial Fulfillment of the Requirements of the
Doctor Degree in Operative dentistry

BY Nahla Hamed Mohamed Hamed

B.D.S. Faculty of Dentistry, Ain Shams University, 2007 M.Sc Faculty of Dentistry, Ain Shams University, 2014 Assistant Lecturer of Operative Dentistry, Faculty of Dentistry, Ain Shams University

Supervisors

Dr. Omaima Hassan Ghallab

Professor of operative dentistry, Faculty of Dentistry, Ain Shams University

Dr. Mohammed Nasser Mohammed AnwarLecturer of Operative Dentistry,
Faculty of Dentistry, Ain Shams University

Acknowledgement

I would like to express my most sincere gratitude and grateful appreciation to *professor Dr. Omaíma Hassan Ghallab*, professor of operative dentistry, faculty of dentistry, Ain shams university for her kind guidance, sincerity and unlimited support.

I deeply thank and faithfully express my gratitude and appreciation to *Dr. Mohammed Nasser Mohammed Anwar*, Lecturer of operative dentistry, faculty of dentistry, Ain shams university for his excellent advice, valuable stimulating guidance and help during this study and throughout my academic and clinical work.

Dedication

To my support system, my backbone, my family.

My dearest mom and dad

My loving and supporting husband

My little heroes Abd Al Rahman & Ammar

My mother and father-in law

My caring sisters & brother

Thank you for being there for me every step of the way.

List of Contents

Introduction	1
Review of literature	3
Effect of dental restorations on the adjacent enamel margins:	
1-Glass ionomer	
I-Remineralization approach:	
1-Saliva:	
2-Fluoride:	
3-Casein Phosphopeptides:4-Fluoride varnish:	
II-Regeneration Approach	
Self -assembling peptides	21
Demineralization-remineralization models	25
Chemical models:	
PH cycling models:	27
Bovine teeth	29
Microhardness and mineral content testing:	32
Microleakage	36
Aim of the study	40
Materials and Methods	41
I- Materials:	41
Calculation of sample size:	
Samples grouping:	46
II- Methods:	49
II.1. Collection of the bovine incisors:	49
Preparation of the samples:	49
II.2. Restoration of the bovine incisors:	_
II.3. Demarcation of the enamel window:	
II.4. Preparation of the demineralization solution:	
II.5. Artificial enamel caries formation:	56

II.6. Application of remineralizing agents	57
PH cycling	64
III-Samples testing	67
Surface and Cross-Sectional Microhardness testing	
Mineral Content Examination (EDAX) of Samples:	
Microleakage leakage examination:	
Results	75
I- Enamel surface micro-hardness	75
II- Enamel cross-sectional microhardness	81
III- Enamel mineral content (EDAX analysis)	
Calcium:	
B- Phosphorus:	
C- Ca/P: D- Fluoride:	
IV- Micro-leakage score	99
Discussion	112
Rationale of this study	112
Discussion of methodology	113
Discussion of results	119
- Microhardness and mineral content results	
-Microleakage results:	_
Conclusions and recommendations	142
Summary	144
References	146
Arabic summary	

List of Tables

TABLE 1: LIST OF MATERIALS USED, PRODUCTS NAMEAND THEIR COMPOSITION,	
MANUFACTURER AND PATCH NUMBER	41
TABLE 2:: LEVELS OF THE STUDY	48
TABLE 3: INTERACTION BETWEEN THE LEVELS OF THE STUDY REGARDING THE	
REMINERALIZING AGENTS	48
TABLE 4: CORRESPONDING WEIGHT OF CHEMICALS USED IN DEMINERALIZING SOLUTION	
PREPARATION	55
TABLE 5: Effect of different variables and their interactions on surface micro	-
HARDNES OF ENAMEL MARGINS	75
TABLE 6: MEAN, STANDARD DEVIATION (SD) VALUES OF ENAMEL SURFACE MICRO-	
HARDNESS FOR DIFFERENT REMINERALIZING AGENTS	76
TABLE 7: MEAN, STANDARD DEVIATION (SD) VALUES OF ENAMEL SURFACE MICRO-	
HARDNESS FOR DIFFERENT REMINERALIZING AGENTS WITHIN RESTORATIVE MATERIA	
AND SURFACE DISTANCES	79
TABLE 8: Effect of different variables and their interactions on enamel cross-	
SECTIONAL MICRO-HARDNESS	81
Table 9:Mean, Standard deviation (SD) values of enamel cross-sectional	
MICRO-HARDNESS FOR DIFFERENT DEPTH DISTANCES	82
TABLE 10: MEAN, STANDARD DEVIATION (SD) VALUES OF ENAMEL CROSS-SECTIONAL	
MICRO-HARDNESS FOR DIFFERENT REMINERALIZING AGENTS	83
TABLE 11: MEAN, STANDARD DEVIATION (SD) VALUES OF ENAMEL CROSS-SECTIONAL	
MICRO-HARDNESS FOR DIFFERENT REMINERALIZING AGENTS WITHIN RESTORATIVE	
MATERIAL AND DEPTH DISTANCES	86
TABLE 12: EFFECT OF DIFFERENT VARIABLES AND THEIR INTERACTIONS ON CALCIUM	
WEIGHT PERCENTAGE (%)	88
Table 13: Mean, Standard Deviation (SD) values of enamel calcium weight	
PERCENTAGE (%) FOR DIFFERENT REMINERALIZING AGENTS WITHIN THE RESTORATIVE	VE
MATERIAL	
TABLE 14: EFFECT OF DIFFERENT VARIABLES AND THEIR INTERACTIONS ON ENAMEL	
PHOSPHORUS WEIGHT PERCENTAGE (%)	90
Table 15: Mean, Standard deviation (SD) values of enamel phosphorus weigh	
PERCENTAGE (%) FOR DIFFERENT REMINERALIZING AGENTS WITHIN THE RESTORATIVE	
MATERIALS	
TABLE 16: EFFECT OF DIFFERENT VARIABLES AND THEIR INTERACTIONS ON ENAMEL CA/P	
RATIO	

TABLE 17: MEAN, STANDARD DEVIATION (SD) VALUES OF ENAMEL CA/P RATIO FOR	
DIFFERENT RESTORATIVE MATERIALS	- 92
TABLE 18: MEAN, STANDARD DEVIATION (SD) VALUES OF ENAMEL CA/P RATIO FOR	
DIFFERENT REMINERALIZING AGENTS	- 93
TABLE 19: MEAN, STANDARD DEVIATION (SD) VALUES OF ENAMEL CA/P RATIO OF	
REMINERALIZING AGENTS AND RESTORATIVE MATERIAL,	- 95
TABLE 20: MEAN, STANDARD DEVIATION (SD) VALUES OF ENAMEL FLUORIDE WEIGHT	
PERCENTAGE (%) FOR DIFFERENT RESTORATIVE MATERIALS	- 96
TABLE 21:MEAN, STANDARD DEVIATION (SD) VALUES OF ENAMEL FLUORIDE WEIGHT	
PERCENTAGE (%) FOR DIFFERENT REMINERALIZING AGENTS	- 97
TABLE 22: MEAN, STANDARD DEVIATION (SD) VALUES OF ENAMEL FLUORIDE WEIGHT	
PERCENTAGE (%) FOR TESTED RESTORATIVE MATERIALS AND REMINERALIZING	
AGENTS	- 98
TABLE 23: MEAN, STANDARD DEVIATION (SD) VALUES OF MICRO-LEAKAGE SCORE OF	
NANOHYBRID RESIN COMPOSITE AND CONVENTIONAL GLASS IONOMER TESTED:	103
TABLE 24: MEAN, STANDARD DEVIATION (SD) VALUES OF MICROLEAKAGE SCORE FOR	
TESTED REMINERALIZING AGENTS	104
TABLE 25: MEAN, STANDARD DEVIATION (SD) VALUES OF MICROLEAKAGE SCORE OF	
TESTED RESTORATIVE MATERIALS WITHIN REMINERALIZING AGENTS	105
TABLE 26: MEAN, STANDARD DEVIATION (SD) VALUES OF MICRO-LEAKAGE SCORE FOR	
REMINERALIZING AGENTS WITHIN THE TESTED RESTORATIVE MATERIALS	107

List of Figures

FIGURE 1:A PROTONATION STATES AND THE AMINO ACID SEQUENCE OF P11-4 AT PH	7.4.
THE SIDE CHAINS ARE LABELLED ACCORDING TO THE PEPTIDE BACK	23
FIGURE 2: SCHEMATIC DIAGRAM SHOWING NUMBER OF SAMPLES, STUDY GROUPS AN	D
TESTS APPLIED	47
FIGURE 3: BOVINE INCISOR EMBEDDED IN ACRYLIC RING BLOCK WITH ENAMEL FACING	
UPWARD	49
FIGURE 4: SMOOTHENED LABIAL SURFACE USING THREE GRITS SILICON OF CARBIDE PA	PERS
(A):320, (B): 600, (C): 1200	50
FIGURE 5: CYLINDRICAL CAVITY PREPARATION WITH DIMENSIONS 1.5DEPTH X 5MM	
DIAMETER	50
FIGURE 6: (A)LIGHT CURE (B)UNIVERSAL ADHESIVE (C)RESIN COMPOSITE (D)ACID ETC	HANT
(E) RESTORED CAVITY	51
FIGURE 7: FINISHING OF RESIN COMPOSITE RESTORATIONS	52
FIGURE 8: CONVENTIONAL GLASS IONOMER RESTORATION OF THE PREPARED CAVITY -	53
FIGURE 9: FINISHING TOOLS OF GLASS IONOMER RESTORATIONS	53
FIGURE 10: FOR DEMARCATION OF ENAMEL WINDOW USING 10x10MM GRAPH PAPE	R
OVERLYING RESTORATIONS	54
. FIGURE 11: EXPOSURE OF DEMARCATED ENAMEL WINDOW	54
FIGURE 12: SCHEMATIC REPRESENTATION FOR THE SEQUENCE OF BOVINE TEETH	
PREPARATION	55
FIGURE 13: PH OF DEMINERALIZING SOLUTION ADJUSTED TO 4.4 MONITORED BY PH	
METER	56
FIGURE 14:ARTIFICIAL CARIOUS LESION FORMATION BY IMMERSION IN 20ML	
DEMINERALIZING SOLUTION	57
FIGURE 15: ARTIFICIAL SALIVA PREPARATION	58
FIGURE 16: APPLICATION OF SELF-ASSEMBLING PEPTIDE	59
FIGURE 17: (A) SELF ASSEMBLING PEPTIDE VIAL. (B): MICROPIPETTE	60
FIGURE 18: (A)DISTILLED WATER DISPENSED (B) INJECTION OF DISTILLED WATER INTO	THE
VIAL USING INSULIN SYRINGE	60
FIGURE 19: APPLICATION OF THE SELF-ASSEMBLING PEPTIDE USING MICROBRUSH	60
FIGURE 20:(A)MI VARNISH® AND MICROBRUSH (B)APPLICATION OF MI VARNISH® OF	V
ENAMEL SURFACE USING MICROBRUSH	
FIGURE 21: APPLICATION OF CURODONT PROTECT TM ON EXPOSED ENAMEL WINDOW	
TWO MINUTES	
FIGURE 22: APPLICATION OF $$ MI PASTE PLUS $^{ ext{@}}$ ON EXPOSED ENAMEL WINDOW FOR T	
MINUTES	63
FIGURE 23: DIAGRAMMATIC REPRESENTATION OF PH CYCLING SEQUENCE	66

FIGURE 24: MICROHARDNESS TESTING MACHINE			
FIGURE 25: BOVINE TEETH PREPARATION FOR MICROHARDNESS TESTING	- 68		
FIGURE 26: SECTIONED SAMPLE MOUNTED IN ACRYLIC MOLD			
FIGURE 27:: DIAGRAMMATIC REPRESENTATION FOR MICROHARDNESS TESTING (A)TOO)TH		
SECTIONING (B) INDENTATION SITES S: SURFACE INDENTATIONS, C: CROSS SECTION	N		
INDENTATIONS	- 70		
FIGURE 28: REPRESENTATIVE IMAGE FOR MINERAL CONTENT QUANTIFICATION USING			
EDAX ANALYSIS FOR BASELINE GLASS IONOMER RESTORED SAMPLE	- 71		
FIGURE 29: STEREOMICROSCOPE FOR MICROLEAKAGE EVALUATION	- 73		
FIGURE 30: REPRESENTATIVE IMAGE FOR DETECTION OF MICROLEAKAGE. (A):			
NANOHYBRID RESIN COMPOSITE: SCORE 3. (B)CONVENTIONAL GLASS IONOMER SCORE 3			
FIGURE 31: BAR CHART VALUES OF ENAMEL SURFACE MICRO-HARDNESS FOR DIFFERENT REMINERALIZING AGENTS.	Т		
FIGURE 32: BAR CHART VALUES OF ENAMEL SURFACE MICRO-HARDNESS FOR DIFFERENT			
REMINERALIZING AGENTS WITHIN RESTORATIVE MATERIAL AND SURFACE DISTANC			
	- 80		
FIGURE 33: BAR CHART SHOWING VALUES OF ENAMEL CROSS-SECTIONAL MICRO- HARDNESS FOR DIFFERENT DEPTH DISTANCES	02		
	- 82		
FIGURE 34: BAR CHART SHOWING VALUES OF ENAMEL CROSS-SECTIONAL MICRO-	02		
HARDNESS FOR DIFFERENT REMINERALIZING AGENTS			
FIGURE 35: BAR CHART SHOWING VALUES OF ENAMEL CROSS-SECTIONAL MICRO-HARDI			
FOR DIFFERENT REMINERALIZING AGENTS WITHIN RESTORATIVE MATERIAL AND DE			
	- 8/		
FIGURE 36: BAR CHART VALUES OF ENAMEL CALCIUM WEIGHT PERCENTAGE (%) FOR			
DIFFERENT REMINERALIZING AGENTS WITHIN THE RESTORATIVE MATERIAL			
FIGURE 37: BAR CHART SHOWING AVERAGE ENAMEL PHOSPHORUS WEIGHT PERCENTAGE			
(%) FOR DIFFERENT REMINERALIZING AGENTS WITHIN THE RESTORATIVE MATERIA			
	- 91		
FIGURE 38: BAR CHART SHOWING VALUES OF ENAMEL CA/P RATIO FOR DIFFERENT			
RESTORATIVE MATERIALS	- 93		
FIGURE 39: BAR CHART SHOWING VALUES OF ENAMEL CA/P RATIO FOR DIFFERENT			
REMINERALIZING AGENTS	- 94		
FIGURE 40: BAR CHART SHOWING AVERAGE ENAMEL CA/P RATIO REMINERALIZING			
AGENTS AND RESTORATIVE MATERIAL.	- 95		
FIGURE 41: BAR CHART SHOWING AVERAGE ENAMEL FLUORIDE WEIGHT PERCENTAGE (
FOR DIFFERENT RESTORATIVE MATERIALS	- 96		
FIGURE 42: BAR CHART SHOWING ENAMEL FLUORIDE WEIGHT PERCENTAGE (%) FOR			
DIFFERENT REMINERALIZING AGENTS	- 97		

FIGURE 43: BAR CHART SHOWING VALUES OF ENAMEL FLUORIDE WEIGHT PERCENTAGE (%)
FOR DIFFERENT RESTORATIVE MATERIALS AND REMINERALIZING AGENTS 99
FIGURE 44: BASELINE ENAMEL MARGIN MINERAL CONTENT MEASUREMENT ADJACENT TO
NANOHYBRID RESIN COMPOSITE RESTORATION99
FIGURE 45: DEMINERALIZED ENAMEL MARGIN MINERAL CONTENT MEASURMENT
ADJACENT TO CONVENTIONAL GLASS IONOMER RESTORATION100
FIGURE 46: ARTIFICIAL SALIVA TREATED ENAMEL MARGIN MINERAL CONTENT
MEASURMENT ADJACENT TO NANOHYBRID RESIN COMPOSITE RESTORATION 100
Figure 47: MI paste $plus^{\circledR}$ treated enamel margin mineral content measurment
ADJACENT TO CONVENTIONAL GLASS IONOMER RESTORATION101
FIGURE 48: MI VARNISH® TREATED ENAMEL MARGIN MINERAL CONTENT MEASURMENT
ADJACENT TO NANOHYBRID RESIN COMPOSITE RESTORATION101
FIGURE 49: CURODONT REPAIR TM TREATED ENAMEL MARGIN MINERAL CONTENT
MEASURMENT ADJACENT TO CONVENTIONAL GLASS IONOMER RESTORATION 102
FIGURE 50: CURODONT PROTECT TM TREATED ENAMEL MARGIN MINERAL CONTENT
MEASURMENT ADJACENT TO NANOHYBRID RESIN COMPOSITE RESTORATION 102
FIGURE 51: BAR CHART SHOWING AVERAGE MICRO-LEAKAGE SCORE OF NANOHYBRID
RESIN COMPOSITE AND CONVENTIONAL GLASS IONOMER TESTED103
FIGURE 52: BAR CHART SHOWING VALUES OF MICROLEAKAGE SCORE FOR TESTED
REMINERALIZING AGENTS104
FIGURE 53: BAR CHART SHOWING AVERAGE MICRO-LEAKAGE SCORE VALUES OF
MICROLEAKAGE SCORE FOR TESTED RESTORATIVE MATERIALS WITHIN
REMINERALIZING AGENTS106
FIGURE 54: BAR CHART SHOWING VALUES OF MICRO-LEAKAGE SCORE FOR
REMINERALIZING AGENTS WITHIN THE TESTED RESTORATIVE MATERIALS107
FIGURE 55: BASELINE NANOHYBRID RESIN COMPOSITE SAMPLE WITH MICROLEAKAGE
SCORE 3108
FIGURE 56: DEMINERALIZED NANOHYBRID RESIN COMPOSITE SAMPLE WITH
MICROLEAKAGE SCORE 3108
FIGURE 57: ARTIFICIAL SALIVA TREATED ENAMEL ADJACENT TO CONVENTIONAL GLASS
IONOMER SAMPLE WITH MICROLEAKAGE SCORE 3. NOTE THE GAP BETWEEN CAVITY
FLOOR AND THE RESTORATION AND THE PRESENCE OF METHYLENE BLUE DYE IN THE
BULK OF THE RESTORATION109
FIGURE 58: CURODONT PROTECT TM TREATED ENAMEL ADJACENT TO NANOHYBRID RESIN
COMPOSITE SAMPLE WITH MICROLEAKAGE SCORE 1109
FIGURE 59: CURODONT REPAIR TM TREATED ENAMEL ADJACENT TO NANOHYBRID RESIN
COMPOSITE SAMPLE WITH MICROLEAKAGE SCORE 3110
FIGURE 60: MI PASTE PLUS® TREATED ENAMEL ADJACENT TO NANOHYBRID RESIN
COMPOSITE SAMPLE WITH MICROLEAKAGE SCORE 1110

FIGURE 61: MI VARNISH® TRI	EATED ENAMEL ADJACENT	TO NANOHYBRID RESIN C	OMPOSITE
SAMPLE WITH MICROLEA	AKAGE SCORE 2		111

Regardless of the restorative material used, demineralization around the margins of restorations has been regarded as the principal cause for restoration replacement. Reduced dental restoration durability necessitates several restorative therapies, including the placement of larger and larger restorations and the execution of complex therapeutic procedures. As a result, restoring the balance between demineralization and remineralization has a significant impact on preventing or minimizing caries formation around restorations¹.

Remineralization is the body's natural repair mechanism for noncavitated carious lesions, in which calcium and phosphate from saliva or other topical sources diffuses into the tooth and, with the help of fluoride, repairs existing crystal remnants rather of forming new ones. The repaired crystalline structure is significantly more resistant to acid attack than the original structure and this is accredited to the new mineralized structure which the harder fluorapatite crystals. Demineralization comprises remineralization occurs simultaneously in the oral cavity. Whether dental caries occurrence is progressive, static or reversal is determined by the balance between demineralization and remineralization. As a result, any factor that can thrust this balance toward remineralization can be utilized as a weapon in the war against dental caries disease ².

The principles of minimally invasive dentistry clearly dictate the need for clinically effective measures to remineralize early enamel caries lesions. While fluoride-mediated remineralization is the cornerstone of current caries management philosophies, a number of new remineralization strategies have been commercialized or are under development that claim to promote deeper remineralization of lesions, reduce the potential risks associated with high-fluoride oral care products, and facilitate caries control over a lifetime³. These non-fluoride remineralizing systems can be broadly categorized into

biomimetic enamel regenerative technologies and the approaches that repair caries lesions by enhancing fluoride efficacy².

Few researches have been conducted to investigate the effect of remineralizing agents on the demineralized lesions adjacent to restorations. Therefore, This research highlights the effect of different remineralizing protocols on the integrity of the tooth and tooth/restoration margins.