

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

Evaluation of the effect of different finishing protocols on translucency and surface roughness of two different ceramic materials

Thesis

Thesis Submitted for the partial fulfillment of the Master Degree requirements in Fixed Prosthodontics,
Faculty of Dentistry, Ain Shams University

By

Omar Abd El Fattah El Didi

B.D.S (2010)

Faculty of Dentistry
Ein Shams University
2019

Supervisors

Prof. Tarek Salah Eldin Morsi

Professor, Head of Fixed Prosthodontics Department
Faculty of Dentistry
Ain shams University

Dr. Ahmed Ezzat Sabet

Associate Professor, Fixed Prosthodontics Department
Faculty of Dentistry
Ain shams University

ACKNOWLEDGEMENT

First and foremost, I would like to thank God for helping me finish this work.

I would like to express my thanks, gratitude and appreciation to Professor **Tarek Salah Eldin Morsi,** Head Professor of Fixed Prosthodontics Department, Faculty of Dentistry, Ain Shams University, for his sincere and continuous assistance to me during my work in this research, he did not spare time or effort or knowledge for my help in Take out this work.

I would like to thank Dr. **Ahmed Ezzat Sabet**, Associate Professor of Fixed Prosthodontics, Faculty of Dentistry, Ain Shams University, for his great help and tireless effort throughout this work.

I would also like to thank all the staff and all my colleagues in the fixed dentistry department at the Faculty of Dentistry, Ain Shams University for their continued assistance, encouragement and continuous support.

DEDICATION

To my family thank you for unconditional love and support

To my professors and all staff of Fixed prosthodontics department –faculty dentistry- Ain shams university for your academic support all the way.

To my colleagues and friends Thank you for the best times we spent together

I give you this Master's thesis

Calling upon the almighty to be crowned with success and acceptance by the members of the discussion committee.

List of contents

Title	Page
List of Content	i
List of Tables	ii
List of Figures	v
Introduction	1
Review of Literature	3
Statement of problem	31
Aim of the Study	32
Materials and Methods	33
Results	57
Discussion	67
Summary and Conclusion	73
References	76
Arabic Summary	A

List of Tables

No.	Title	Page
1	Different materials used in the study	33
2	Finishing and polishing tools used in the study	34
3	Composition of Cubic Nanocrystalline Zirconia	34
4	Properties of Cubic Nanocrystalline Zirconia	34
5	Composition of Zirconia Reinforced Lithium Silicate	36
6	Properties of Zirconia Reinforced Lithium Silicate	36
7	Composition of Glaze material	37
8	factorial analysis	41
9	Sintering Cycle Recommendations	42
10	Firing Parameters of Bruxzir anterior shaded 350	51
11	Firing Parameters of Celtra Duo	51
12	Descriptive statistics of contrast ratio	57
13	Effect of different variables and their interactions on Contrast ratio	58
14	Mean \pm standard deviation (SD) of contrast ratio for different variables	59
15	Descriptive statistics of surface roughness (Ra)	61
16	Effect of different variables and their interactions on Surface roughness (Ra)	62
17	Mean ± standard deviation (SD) of surface roughness (Ra) before and after aging within each finishing protocol and ceramic material	64
18	Mean ± standard deviation (SD) of surface roughness (Ra) before and after aging within each finishing protocol and ceramic material	66

List of Figures

No.	Title	Page
1	Bruxzir Anterior Shaded 350 blank	35
2	Celtra Duo block	37
3	IPS E.max Cad Glaze	38
4	Celtra Universal Glaze	38
5	Sample grouping	40
6	Cube of Cubic nanocrystalline Zirconia	43
7	Cutting of specimens from Celtra Due block	44
8	Cutting of Bruxzir Anterior Cube	44
9	Sintering of ultra-translucent Zirconia samples	45
10	Celtra Duo samples on the left and Bruxzir Anterior	45
	shaded on the right	
11	Thickness of all samples 0.5 mm	46
12	Ultra-sonic cleaning of specimens	46
13	(A) EVE Diasynt Plus/Diapro Kit. (B) Polishing	48
	Instruments	
14	(A) EVE DiaSynt Plus – DiaCera Kit and (B)	49
	polishing instruments	
15	Polishing of samples	50
16	Glazing of samples	51
17	sample in spectrophotometer	53
18	measuring surface roughness by stylus profilometer	54
19	(A) Thermocycler used for aging of sample.(B)	55
	Thermocycler sets on 3000 cycles	

No.	Title	Page
20	Bar chart showing average Contrast ratio before and	60
	after aging within each finishing protocol and ceramic	
	material	
21	Bar chart showing average Contrast ratio for different	60
	finishing protocols within each ceramic material	
	before and after aging	
22	Bar chart showing average Surface roughness (Ra)	65
	before and after aging within each finishing protocol	
	and ceramic material	
23	Bar chart showing average Surface roughness (Ra) for	65
	different finishing protocols within each ceramic	
	material before and after aging	
24	Scatter plot showing the correlation between contrast	66
	ratio and surface roughness	

1. INTRODUCTION

The appearance of natural teeth is best mimicked by ceramic materials. In recent years the popularity of all-ceramic dental restorations has increased due to their high esthetic qualities and metal-free structure. Significant developments in all-ceramic materials have created wonderful opportunities for the fabrication of lifelike restorations that provide reliable, long-term results¹.

However, all-ceramic dental materials are inherently fragile in tension, affected by micro cracking, flaws, and defects that may be introduced during thermal treatment or fabrication procedures. The fabrication process precision, and skills of individual dental technicians, may affect the reliability and clinical performance of all-ceramic restorations¹.

Mechanical properties such as strength and optical properties such as color and translucency are the first parameters assessed to understand the clinical potential and limits of dental ceramics.

Natural glaze is a glazed ceramic layer formed on the surface of porcelain, containing a glass phase when the porcelain is heated to the temperature of glaze for the time specified by the manufacturers. This layer may deteriorate with clinical modifications to the final restoration, leading to a coarse surface that resembles a pre-treated surface².

Polishing has been shown to improve structural resistance to oral conditions and ensure visual properties of restoration. The transparency and strength of the slab and the veneer system can be seen in the ceramic system with natural enamel that has a transparency failure³.

INTRODUCTION

The translucency of dental restorative material is usually determined by Contrast ratio (CR) or Transparency Parameters (TP). Translucency of dental ceramics materials is important for the esthetic quality of the dental restorations⁴.

All ceramic crowns allow for greater transfer of light through the crown and can mimic the appearance of natural teeth in terms of surface texture and trans-electivity. Differences in the transparency of the basic materials in the restoration process may affect final results⁵.

The objectives of this study were to determine the effects of different surface finishing protocols on the surface roughness and translucency of two different ceramic materials.