

بسم الله الرهكن الرّحيم

$\infty \infty \infty$

تم رفع هذه الرسالة بواسطة /صفاء محمود عبد الشافي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لايوجد

ADSORPTION OF COPPER AND ZINC FROM AQUEOUS SOLUTIONS USING FULLER'S EARTH: KINETICS, EQUILIBRIUM, AND THERMODYNAMICS

By

Ahmed Ali Ibrahim Eita

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Civil Engineering - Public Works

ADSORPTION OF COPPER AND ZINC FROM AQUEOUS SOLUTIONS USING FULLER'S EARTH: KINETICS, EQUILIBRIUM, AND THERMODYNAMICS

By **Ahmed Ali Ibrahim Eita**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Civil Engineering - Public Works

Under the Supervision of

Assoc. Prof. Dr.

Minerva Edward Matta

Associate Professor of Sanitary &
Environmental Engineering
Civil Engineering — Public Works
Faculty of Engineering, Cairo University

Associate Professor of Sanitary &
Environmental Engineering
Civil Engineering — Public Works
Faculty of Engineering, Cairo University

ADSORPTION OF COPPER AND ZINC FROM AQUEOUS SOLUTIONS USING FULLER'S EARTH: KINETICS, EQUILIBRIUM, AND THERMODYNAMICS

By **Ahmed Ali Ibrahim Eita**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Civil Engineering - Public Works

Approved by the Examining Committee

Assoc. Prof. Dr. Minerva Edward Matta, Thesis Main Advisor

Prof. Dr. Mona Mohamed Galal Eldin, Internal Examiner

Prof. Dr. Maha Mostafa El Shafei, External Examiner

Professor of Sanitary & Environmental Engineering Housing and Building National Research Center

> FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2022

Engineer's Name: Ahmed Ali Ibrahim Eita

Date of Birth: 10/06/1991 **Nationality:** Egyptian

E-mail: Ahmedalie1@hotmail.com

Phone: +201069400335

Address: Behbeit Elhegara, Samanoud, Gharbia, Egypt.

Registration Date: 01/03/2018 **Awarding Date:**/2022 **Degree:** Master of Science

Department: Civil Engineering – Public Works

Supervisors: Assoc. Prof. Dr. Minerva Edward Matta

Assoc. Prof. Dr. Safwat Mahmoud Safwat

Examiners: Assoc. Prof. Dr. Minerva Edward Matta (Thesis main advisor)

Assoc. Prof. Dr. Safwat Mahmoud Safwat (advisor)

Prof. Dr. Mona Mohamed Galal Eldin (Internal examiner)
Prof. Dr. Maha Mostafa El Shafei (External examiner)

Professor of Sanitary & Environmental Engineering Housing and Building National Research Center

Title of Thesis:

Adsorption of Copper and Zinc from Aqueous Solutions Using Fuller's Earth: Kinetics, Equilibrium, and Thermodynamics

Kev Words:

Adsorption; Fuller's Earth; Copper; Zinc; Wastewater.

Summary:

Heavy metals are non-biodegradable toxins that can accumulate in nature. Many of the most widespread heavy metals are copper and zinc. Adsorption is an effective method for the uptake of heavy metals from wastewater. Thus, this research aimed to study the adsorption of copper and zinc onto fuller's earth. The effects of the solution's pH and initial concentration were investigated. The results showed that the efficiency of removal increased with the initial pH value of the solution. The optimum initial concentration of either copper or zinc for maximum removal efficiency was found to be 100 mg/L. The adsorption kinetics and mechanism were studied using pseudo-first-order, pseudosecond-order, Elovich equation, intra-particle, and Boyd models. The data were best fitted with a pseudo-second-order kinetic model for either copper or zinc concentrations. The data were also fitted using several isotherms for equilibrium studies, such as Langmuir, Dubinin-Radushkevich, Freundlich, and Temkin. The adsorption of either copper or zinc using fuller's earth was best fitted with a Dubinin-Radushkevich and Temkin isotherm, respectively. Thermodynamics and desorption studies were also reported. The results indicate that the adsorption efficiency increased with temperature, while desorption studies showed that HCl was able to regenerate the used fuller's earth. Finally, the morphology of the fuller's earth before and after adsorption was examined and showed the difference between the surfaces of fuller's earth before and after adsorption process.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Ahmed Ali Ibrahim Eita Date: ... /... /2022

Signature:

Acknowledgments

First and foremost, I am thankful to **Allah the Almighty God** for his grace and generosity.

I am extremely grateful to **Assoc. Prof. Dr. Minerva Edward Matta**, Associate Professor of Sanitary & Environmental Engineering, Cairo University, for her valuable assistance, continuous encouragement, and her advice during this work.

I am also extremely grateful to **Assoc. Prof. Dr. Safwat Mahmoud Safwat**, Associate Professor of Sanitary & Environmental Engineering, Cairo University, for his enormous help in developing this research idea, his helpful guidance, valuable assistance, continuous encouragement, and his advice during this work.

In addition, I am very grateful to **all my professors and teachers** who offered me a chance to expand my horizon and develop a better thinking mentality through different MSc courses.

Furthermore, I am very grateful to my **father and mother also my Family** for their continuous encouragement to finish this thesis in minimal time and their continuously moral support during this work.

Finally, I am grateful to my **Wife** for her continuous support and encouragement to finish this thesis.

Table of Contents

LIST OF TABLES	VI
LIST OF FIGURES	VII
NOMENCLATURE	X
ABSTRACT	XII
CHAPTER 1: INTRODUCTION	1
1.1. General	1
1.2. OBJECTIVES OF THE THESIS	1
1.3. Organization of the thesis	2
CHAPTER 2 : LITERATURE REVIEW	3
2.1. Introduction	3
2.2. Heavy metals	3
2.3. HEAVY METALS IN WASTEWATER	4
2.3.1. Copper in wastewater	4
2.3.2. Zinc in wastewater	5
2.4 Treatment techniques	6
2.4.1. Cementation	6
2.4.2. Membrane filtration	7
2.4.2.1. Ultrafiltration	7
2.4.2.2. Nanofiltration	7
2.4.2.3. Reverse osmosis (RO)	
2.4.3. Electrochemical methods	8
2.4.3.1. Electro-coagulation (EC)	8
2.4.3.2. Electro-oxidation (EO)	9
2.4.4. Ion exchange	9
2.4.5. Photocatalysis	10
2.4.6. Biological treatment	10
2.4.7. Adsorption	11
2.5. ADSORPTION AS A COMMON TECHNIQUE	11
2.5.1. Adsorption Basis	11
2.5.2. Adsorbents	
2.5.3. Fuller's earth characteristics	13
2.5.4. Adsorption Equilibrium	14
2.5.4.1. Langmuir isotherm equation	15
2.5.4.2. Freundlich isotherm equation	16
2.5.4.3. Temkin isotherm equation	17
2.5.4.4. Dubinin-Radushkevich isotherm equation	17
2.5.5. Adsorption kinetics	18

2.5.5.1. Preface	18
2.5.5.2. Adsorption Rate	18
2.5.5.2.1. Pseudo first order	18
2.5.5.2.2. Pseudo second order	19
2.5.5.2.3. Elovich equation	19
2.5.5.3. Adsorption mechanisms	19
2.5.5.3.1. Intra-particle diffusion model	20
2.5.5.3.2. Boyd model	20
2.5.6. Thermodynamics	21
2.5.7. Adsorption Systems	22
2.5.8. Desorption	23
2.6. Previous studies of adsorption using fuller's earth	23
2.6.1. Adsorption of polyvinyl alcohol onto Fuller's earth surfaces	23
2.6.2. Kinetic, equilibrium and thermodynamic studies for sorption of 2,4-	
dichlorophenol onto surfactant modified fuller's earth	24
2.6.3. Adsorption of mercury from aqueous solutions using Fuller's earth, a	
comparison with activated carbon	24
2.6.4. Fuller's earth and fired clay as adsorbents for dyestuffs equilibrium	
and rate studies	24
CHAPTER 3 : EXPERIMENTAL WORK	25
3.1. Introduction	25
3.2. Experimental Setup	25
3.3. Materials Used	25
3.3.1. Characteristics of wastewater and adsorbent	25
3.3.1.1. Characteristics of wastewater	25
3.3.1.2. Adsorbent	27
3.3.2. Devices used during experimental work	27
3.3.2.1. Scale	27
3.3.2.2. Falcon Tubes	27
3.3.2.3. Orbital Shaker	28
3.3.2.4. Vacuum Pump	28
3.3.2.5. pH Meter	29
3.3.2.6. Spectrometers	29
3.3.2.7. SEM Microscope	
3.4. DESCRIPTION OF THE EXPERIMENTAL WORK	31
3.4.1. Run No. 1 (Determination of Optimum pH)	33
3.4.2. Run No. 2 (Adsorption Kinetics)	33
3.4.3. Run No. 3 (Adsorption Isotherms)	33
3.4.4. Run No. 4 (Adsorption Thermodynamics)	34
3.4.5. Run No. 5 (Desorption Studies)	34
3.5. Analysis conducted	35

CHAPTER 4: RESULTS AND DISCUSSION	36
4.1. THE EFFECT OF SOLUTION PH ON ADSORPTION EFFICIENCY:	36
4.2. THE EFFECT OF FULLER'S EARTH DOSE ON ADSORPTION EFFICIENCY:	37
4.3. THE EFFECT OF INITIAL CONCENTRATIONS OF COPPER AND ZINC ON ADSO	RPTION
EFFICIENCY:	39
4.4. STUDY OF ADSORPTION KINETICS:	40
4.5. STUDY OF ADSORPTION MECHANISMS:	49
4.6. EQUILIBRIUM THROUGH ADSORPTION ISOTHERMS:	55
4.7. STUDY OF ADSORPTION THERMODYNAMICS:	58
4.8. THE MORPHOLOGIES OF FULLER'S EARTH BEFORE AND AFTER ADSORPTION	N61
4.9. REGENERATION EXPERIMENTS OF FULLER'S EARTH	
4.10.Cost Analysis	66
4.10.1. Cost of construction and equipment	66
4.10.2. Cost of chemicals	
4.10.3. Cost of Electricity	67
4.10.4. Total cost	67
CHAPTER 5: CONCLUSION AND RECOMMENDATIONS	68
5.1. Conclusion	
5.2. Future works recommendations	69
REFERENCES	70

List of Tables

Table 3.1: Cupric sulphate characteristics	26
Table 3.2: Zinc sulphate characteristics	26
Table 3.3: Fuller's earth characteristics	27
Table 3.4: Experimental works schedule	34
Table 4.1: Parameters of kinetic models for copper	48
Table 4.2: Parameters of kinetic models for zinc	49
Table 4.3: The parameters of different isotherms for copper adsorption onto fuller	's
earth	57
Table 4.4: The parameters of different isotherms for zinc adsorption onto fuller's e	earth
	58
Table 4.5: The parameters of thermodynamics model for copper adsorption onto	
fuller's earth	61
Table 4.6: The parameters of thermodynamics model for zinc adsorption onto fulle	er's
earth	61
Table 4.7: Desorption of copper from fuller's earth using HCl	65
Table 4.8: Desorption of zinc from fuller's earth using HCl	65
Table 4.9: Cost of chemicals per m ³ /day	66

List of Figures

Figure 2.1: Copper cementation on iron	6
Figure 2.2: Reverse osmosis mechanism	
Figure 2.3: Principal of electrocoagulation	9
Figure 2.4: Adsorption mechanisms	
Figure 3.1: Cupric sulphate crystals	26
Figure 3.2: Zinc sulphate crystals	26
Figure 3.3: Fuller's earth powder	27
Figure 3.4: Falcon tubes rack and falcon tube	28
Figure 3.5: Rocker 811 Vacuum Pump	
Figure 3.6: inoLab pH meter	29
Figure 3.7: ICE 3000 AAS Atomic Absorption Spectrometer	
Figure 3.8: Agilent Technologies 700 series ICP-OES	
Figure 3.9: SEM Quanta FEG 250	
Figure 3.10: Five stocks of copper contaminated solutions	
Figure 3.11: pH Measurement	
Figure 3.12: Five stocks of zinc contaminated solutions	
Figure 3.13: Dose determination using scale device	
Figure 3.14: Shaking phase	32
Figure 3.15: Filtration of the effluent solutions using vacuum pump and filter	
Figure 4.1: Effect of initial pH value on adsorption of copper from aqueous so	
Figure 4.2: Effect of initial pH value on adsorption of zinc from aqueous solu	
Figure 4.3: Effect of adsorbent doses on adsorption of copper from aqueous s	
pH = 9	
Figure 4.4: Effect of adsorbent doses on adsorption of zinc from aqueous solu	itions at
pH = 9	38
Figure 4.5: Effect of copper and zinc initial concentrations on the adsorption	of copper
and zinc from aqueous solutions at $pH = 9$ and adsorbent dose = 0).25 g39
Figure 4.6: Copper and zinc residual concentrations after the adsorption of co	pper and
zinc from aqueous solutions at $pH = 9$ and adsorbent dose = 0.25	g40
Figure 4.7: Pseudo First order kinetic model for copper and zinc at initial con	centration
= 25 mg/L	
Figure 4.8: Pseudo First order kinetic model for copper and zinc at initial con	centration
$= 50 \text{ mg/L} \dots$	41
Figure 4.9: Pseudo First order kinetic model for copper and zinc at initial con	centration
$= 75 \text{ mg/L} \dots$	42
Figure 4.10: Pseudo First order kinetic model for copper and zinc at initial	
concentration = 100 mg/L	42
Figure 4.11: Pseudo First order kinetic model for copper and zinc at initial	
concentration = 150 mg/L	43
Figure 4.12: Pseudo second order kinetic model for copper and zinc at initial	
concentration = 25 mg/L	43
Figure 4.13: Pseudo second order kinetic model for copper and zinc at initial	
concentration = 50 mg/L	
Figure 4.14: Pseudo second order kinetic model for copper and zinc at initial	
concentration = 75 mg/L	44

	Pseudo second order kinetic model for copper and zinc at initial	
(concentration = 100 mg/L	45
	Pseudo second order kinetic model for copper and zinc at initial	
	\mathcal{C}	45
Figure 4.17:	Elovich kinetic model for copper and zinc at initial concentration	
	\mathcal{E}	46
Figure 4.18:	Elovich kinetic model for copper and zinc at initial concentration	
		46
Figure 4.19:	Elovich kinetic model for copper and zinc at initial concentration	
T' 100	= 75 mg/L	47
Figure 4.20:	Elovich kinetic model for copper and zinc at initial concentration	4.7
T' 101	= 100 mg/L	47
Figure 4.21:	Elovich kinetic model for copper and zinc at initial concentration	40
F: 4.00	&	48
Figure 4.22:	Intra-particle diffusion model for copper and zinc at initial concentration	
E: 4 22.	= 25 mg/L	
Figure 4.23:	Intra-particle diffusion model for copper and zinc at initial concentration	
Eigen 4 24.	= 50 mg/L	
Figure 4.24:	Intra-particle diffusion model for copper and zinc at initial concentration = 75 mg/L	
Figure 4 25.	C	
rigure 4.23:	Intra-particle diffusion model for copper and zinc at initial concentration	
Figure 4 26.	= 100 mg/L Intra-particle diffusion model for copper and zinc at initial concentration	
rigule 4.20.		
Figure 4 27.	= 150 mg/L Boyd kinetic model for copper and zinc at initial concentration	32
rigule 4.27.	= 25 mg/L	52
Figure 4 28.	Boyd kinetic model for copper and zinc at initial concentration	32
11guie 4.26.	= 50 mg/L	53
Figure 4 20.	Boyd kinetic model for copper and zinc at initial concentration	55
1 iguic 4.27.	= 75 mg/L	53
Figure 4 30.	Boyd kinetic model for copper and zinc at initial concentration	55
1 1guic 4.50.		54
Figure 4 31.	Boyd kinetic model for copper and zinc at initial concentration	<i>J</i> 1
116010 1.51.	= 150 mg/L	54
Figure 4 32:	Langmuir isotherm for copper and zinc adsorption using	٠.
118010 1.02.	fuller's earth	55
Figure 4.33:	Freundlich isotherm for copper and zinc adsorption using	
8	fuller's earth	56
Figure 4.34:	Temkin isotherm for copper and zinc adsorption using fuller's earth	
_	Dubinin-Radushkevich isotherm for copper and zinc adsorption using	
υ	fuller's earth	57
Figure 4.36:	Temperature effect on the removal efficiency of copper adsorption on	
C	fuller's earth	59
Figure 4.37:	Temperature effect on the removal efficiency of zinc adsorption on fuller	
C	earth	
Figure 4.38:	Thermodynamics model for copper adsorption onto fuller's earth	
-	Thermodynamics model for zinc adsorption onto fuller's earth	
_	SEM images of fuller's earth at 4000X, before adsorption	
	EDX of fuller's earth at 4000X, before adsorption	
Figure 4.42:	SEM images of fuller's earth at 4000X, after copper adsorption	63

Figure 4.43: EDX of fuller's earth at 4000X, after copper adsorption	63
Figure 4.44: SEM images of fuller's earth at 4000X, after zinc adsorption	
Figure 4.45: EDX of fuller's earth at 4000X, after zinc adsorption	

Nomenclature

2,4-DCP 2,4-dichlorophenol

A_{ad} surface area per gram of adsorbent

AC activated carbon

A_T Temkin isotherm equilibrium binding constant B Temkin constant related to heat of sorption

b_A Langmuir adsorption constant
B_{DR} Dubinin–Radushkevich constant

B_t the function of F

b_T Temkin isotherm constant C Constant in the isotherm models

C_{desorbed} the metal concentration liquid phase present in the desorbing solution

CdS Cadmium sulfide

C_e adsorbate equilibrium concentration in aqueous solution

CeO₂ Ceric oxide

C_o adsorbate initial concentration in aqueous solution

Conc. Concentration

Cu Copper

CuSO₄ Copper sulfate
Da Dalton unit

D_i effective diffusion coefficient

E adsorption energy

e⁻/h⁺ Suppressed recombination of photogenerated electrons/holes

EC electrocoagulation

EDX Energy Dispersive X-Ray Analysis EMRA Egyptian Mineral Resources Authority

EO electro-oxidation

EPA Environmental Protection Agency

ER electroreduction

F fractional attainment of equilibrium at different time t

FE Fuller's earth
HCl hydrochloric acid
J/mol Joule per mole

J/mol/K Joule per mole kelvin

K.V. kilovolt

K₁ constant for the Pseudo-first-order equation

K₂ rate constant for the Pseudo-second-order equation

 K_{ad} Langmuir adsorption equilibrium constant K_F Freundlich adsorption capacity parameter

K_{id} expression rate kJ/mol kilojoule per mole

M the reductant metal in cementation process

mol Mole

m²/g square meter per gram

MW molecular weight of adsorbate

N the noble metal in cementation process n Freundlich adsorption intensity parameter