

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سامية زكى يوسف

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

Total Knee Arthroplasty vs Uni Compartment Knee Arthroplasty in Management of Anteromedial Knee Osteoarthritis

Thesis

Submitted for Partial Fulfillment of M.D. Degree in Orthopaedic Surgery

By

Ahmed Abd El Samad Abd Rabo Alkersh

Under Supervision of

Professor/ Wael Samir Abd ElMageed

Professor of Orthopaedic surgery Faculty of Medicine – Ain Shmas Univesity

Professor/ Sherif Mostafa Elsayed

Associate Professor of Orthopaedic surgery Faculty of Medicine – Ain Shmas Univesity

Professor/ Zeiad Mohamed Zakaria

Associate Professor of Orthopaedic Surgery Faculty of Medicine – Ain Shams University

Professor/ Radwan Gamal El Din Metwaly

Associate Professor of Orthopaedic Surgery Faculty of Medicine – Ain Shams University

Doctor / Mohamed El Sayed Awad

Lecturer of Orthopaedic Surgery Faculty of Medicine – Ain Shams University

Faculty of Medicine - Ain Shams University
2022

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Professor/ Wael Samir**Abdel Megeid, Professor of Orthopaedic Surgery

Faculty of Medicine – Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Professor** / **Sherif Mostafa**Abdeldyem, Associate Professor of Orthopaedic Surgery Faculty of Medicine – Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

Special thanks and deepest gratitude to **Professor** / **Zeiad** M. **Zakaria**, Associate Professor Orthopaedic Surgery Faculty of Medicine – Ain Shams University, for his good support, continuous supervision and unlimited help during this work.

I wish to introduce my deep respect and thanks to **Professor**/ **Radwan Gamal El Deen Abdel Hamid,** Associate Professor of Orthopaedic Surgery Faculty of Medicine – Ain Shams University, for his kindness, supervision and cooperation in this work.

I am deeply grateful for **Doctor** / **Mohamed El Sayed Awad**, Lecturer of Orthopaedic Surgery Faculty of Medicine – Ain Shams University, for his valuable help and guidance.

Ahmed Alkersh

Tist of Contents

	_
Title Page No	٥.
List of Tables	i
List of Figures	.ii
List of Abbreviations	.v
Introduction	. 1
Aim of the Work	.3
Review of Literature	
Applied Anatomy and Pathology of the Anteromedial Knee Osteoarthritis	.4
Radiological Assessment for Anteromedial knee Osteoarthritis and Suitability for Unicompartement Knee Arthroplasty1	L 5
Treatment Options for Anteromedial Knee Osteoarthritis2	24
Material and Methods	35
Results4	14
Case Presentation	50
Discussion	58
Summary6	32
References	33
Arabic Summary	

Tist of Tables

Table No	. Title	Page No.
Table (1):	Baseline demographic data of participants	
Table (2):	Functional KSS for overall patients pre postoperative	
Table (3):	Functional KSS for both groups pre postoperative	
Table (4):	Time to leave support postoperative	48
Table (5):	Complications	49

Tist of Figures

Fig. No.	Title	Page N	Jo.
Figure (1):	Intraoperative photo showing pre- cartilage at the back of the platear		
Figure (2):	Diagramatic explanation of the passigns of AMOA	hysical	
Figure (3):	a: The intact ACL holds the forward on the tibia in extensions. Rupure of ACL allows po	femur ension. esterior	
Figure (4):	subluxation of the femur on the till Intraoperative picture of an	ACL	
Figure (5):	surrounded by osteophytesAP Weight bearing view and stress view showing full this cartilage defect in the	varus ckness	14
Figure (6):	compartmentLateral view showing the extens		16
Figure (7):	the erosion The distinctive profiles of the po	sterior	17
Figure (8):	margins of the medial and latera plateaux in lateral view Valgus stress radiograph sl	nowing	
Figure (9):	preserved lateral compartment Valgus stress radiograph sl correctable varus deformity (func	howing	19
Figure (10):	MCL)	emoral	
Figure (11): Figure (12):	Pros and cons for both UKA and TA: Preoperative and. B: 3 is postoperative weight bearing x ray patient who under went closing	KA months vs for a	
	HTO		31

Tist of Figures (Cont...)

Fig. No.	Title Page	No.
Figure (13):	A: Preoperative and. B: 3 months	
	postoperative weight bearing x rays for	
	a patient who under went opening	0.4
T: (4.4)	wedge HTO	31
Figure (14):	a- stress valgus view with bone on bone	
	in the anteromedial compartment of the	
	knee. b- stress varus view showing	200
Figures (15).	functioning MCL	
Figure (15):		
Figure (16): Figure (17):	Sperner classification of patellofemoral	31
rigure (17):	osteoarthritis: grade 0 (no degenerative	
	changes), grade 1 (definitive	
	subchondral sclerosis with minimal	
	osteophytes on the patella), grade 2	
	(definite osteophytes on the patella),	
	grade 3 (narrowing of patellofemoral	
	joint space, osteophytes on the patella	
	and femoral condyles) and grade 4 (tight	
	joint space and large osteophytes with a	
	deformed patella)	37
Figure (18):	a- Postoperative X-rays with UKA. b-	
_	Postoperative X-rays with TKA	40
Figure (19):	Functional knee sosciety score	41
Figure (20):	Patient recruitment flow chart	45
Figure (21):	Functional KSS for both groups pre and	
	postoperative	47
Figure (22):	Bar chart showing difference in time to	
	leave support between the two groups	
Figure (23):	Preoperative clinical photos for case (1)	
Figure (24):	Preoperative radiographs for case (1)	52
Figure (25):	Intraoperative examination for ACL	
	integrity in case (1)	53

Tist of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (26):	Postoperative radiographs ap	and
	lateral views for case (1)	54
Figure (27):	Two weeks postoperative follow	up
	clinical photo for case (1)	54
Figure (28):	Preoperative clinical photos for case	
Figure (29):	Preoperative radiographs for case (2	2)56
Figure (30):	A- Intraoperative examination for	ACL
	integrity and lateral compartment	nt in
	case (2). B – Tibial cut sho	wing
	preserved posterior cartilage in case	(2)57
Figure (31):	Postoperative radiographs ap	and
_	lateral views for case (2)	

Tist of Abbreviations

Abb.	Full term
ACL	Anterior cruciate ligament
<i>AMOA</i>	Anteromedial osteoarthritis
<i>AP</i>	Anteroposterior
HTO	High tibial osteotomy
KSS	Knee society score
<i>MCL</i>	Medial collateral ligament
<i>OA</i>	Osteoarthritis
OMERACT	C Outcome Measures in Rheumatology Trials
<i>RCT</i>	Randomized clinical trial
<i>RCT</i>	
<i>TKA</i>	Total knee arthroplasty
TOPKAT	Total or partial knee arthroplasty trial
<i>UKA</i>	Unicompartement knee Arthroplasty
<i>WORQ</i>	

Introduction

This contact stress ends by destruction of the cartilage first then the bone. There is a special type of knee OA in which the destruction is localized in the anteromedial compartment of the knee joint. Erosion of the cartilage begins in the anterior half of the medial tibial plateau, with preservation of the cartilage in the posterior third. Anteromedial knee osteoarthritis is also associated with a lesion on the distal femoral condyle, and an intact anterior cruciate ligament (ACL). Deficient ACL knee leads to a progression of the disease to all knee compartments. ¹

A huge number of patients with knee osteoarthritis are in need to total knee arthroplasty (TKA). ² An improved surgical technique, safe anesthesia, effective pain control, and accelerated rehabilitation due to modern implant design have improved predictable outcomes in TKA. ³ Recently, patients are doing TKA at younger ages and early stages of the disease to lessen the pain and preserve their daily life activities with a good quality. ⁴ However, 15%–20% patients are unsatisfied with their post TKA outcomes. ^{4,5}

As regard Unicompartement knee arthroplasty (UKA) which has excellent functional outcomes and became a good option in management of anteromedial osteoarthritis ^{6,7}, there are persisting concerns regarding its durability and the need for

revision surgery. 8,9 There are different reasons that make only a few arthroplasty surgeons offering UKA to their patients, a limited numbers of eligible candidates, complex surgical technique, and steep learning curve. 10,11 More than 30% of patients who did TKA are candidates for UKA, but only 5% of all knee replacements performed are UKA.¹²

UKA has potential advantages compared to TKA which are rapid recovery, better postoperative rehabilitation, more physiologic gait, earlier discharge to home. Additionally, it blood loss, postoperative morbidity, perioperative costs. Previous literature has demonstrated UKA as the preferred method for surgeons attempting to maintain native joint mechanics, preserve bone, and allow for easier revision surgery in comparison to TKA. Therefore, surgeons recommend UKA to young, active patients who may be expected to require prosthesis revision in their lifetime.¹³

Research hypothesis:

- **Alternative hypotheses:** UKA has better functional outcome than TKA in management of isolated anteromedial knee osteoarthritis.
- **Null hypothesis:** Both UKA and TKA has same functional outcome in management of isolated anteromedial knee osteoarthritis.

AIM OF THE WORK

Our aim was to find an answer to the following questions:

- 1- Is there a difference in the functional outcome after either TKA or UKA in treatment of anteromedial knee osteoarthritis?
- 2- Is there a difference in the time that the patient can move without support after either UKA and TKA?
- 3- Is there a difference in postoperative complications between TKA and UKA?

APPLIED ANATOMY AND PATHOLOGY OF THE ANTEROMEDIAL KNEE OSTEOARTHRITIS

The knee is a complex modified hinge joint with the greatest range of movement in flexion and extension about the sagittal plane, as well as varus and valgus rotation about the frontal plane. Also, it facilitates the medial rotation at the end of the knee flexion and the lateral rotation at the terminal extension of the knee both at the transverse plane. The knee maintains stability and control during a variety of loading situations.¹⁴

The knee consists of two main joints: the femorotibial joint and the patellofemoral joint, which allow the knee to move in three different planes (sagittal, transverse, and frontal). This offers a six degrees of freedom range of motion, including flexion, extension (sagittal planes), internal, external rotation (transverse plane), varus, and valgus stress (frontal plane).¹⁴

Osteoarthritis (OA) is the most common arthritic condition which has considerable social and economic impact. It is characterized by altered joint anatomy, especially the loss of articular cartilage. Pathologically OA may be defined as a condition of synovial joints characterized by focal loss of articular cartilage and simultaneous proliferation of new bone (osteophytes) with the remodeling of joint contour.¹⁵

The precise mechanism of cartilage degradation in osteoarthritis is still unclear, but a complex interplay of genetic, environmental, metabolic and biochemical factors is proposed.¹⁶

Knee osteoarthritis (OA) is a complex clinical scenario where many biological and mechanical factors influence the severity of the articular degenerative changes.¹⁷ Cartilage degenerative changes are due to genetic (collagen gen II, cytokine gene pro/anti-inflammatory, metabolism gene chondrocyte/bone, etc) and biomechanical (joint instability, trauma, overweight, daily living activities, etc.) factors, and age progression, which all lead to matrix degradation and abnormal chondrocyte metabolism.¹⁷ The function of knee capsulo-ligamentous structures has been studied to understand the wear pattern of the joint cartilage.¹⁸ Knee varus/valgus deformity, anterior cruciate ligament (ACL) and meniscus integrity are all factors that contribute to determining abnormal kinematics and excessive joint loading.¹⁹

The knee has three compartments, all of which can suffer from OA and there can thus be seen tri-, bi- or unicompartmental OA.²⁰ The bicompartmental OA can occur in three combinations, where the combination of medial and patellofemoral involvement is the most frequent.²⁰ In most patients with knee unicompartmental OA, the arthritis is confined to the medial compartment, where it is most often anteromedial (AMOA).²¹