

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Cairo University Faculty of Veterinary Medicine

Viral problems of Tilapia fish in Egypt

A thesis submitted by Engy Taha Bayomy Mohamed

(BVSc, Cairo University, 2013; MVSc, Cairo University, 2017)

For the degree of the Ph.D. (Aquatic animal medicine and management)

Under Supervision of Mohamed Abdel Aziz Ahmed

Prof. of Aquatic animal medicine and management, Faculty of Veterinary Medicine, Cairo University.

Mohamed Moustafa Mohamed

Prof. of Aquatic animal medicine and management, Faculty of Veterinary Medicine, Cairo University.

Ausama Abdel-Raouf Abdel-Moneim

Prof. of Virology, Faculty of Veterinary Medicine, Cairo University.

Cairo University Faculty of Veterinary Medicine Department of Aquatic Animal Medicine and Management

Supervision Sheet

Prof. Dr. Mohamed Abd El-Aziz Ahmed

Professor of Aquatic Animal Medicine and Management Faculty of Veterinary Medicine Cairo University, Giza.

Prof. Dr. Mohamed Moustafa Mohamed

Professor of Aquatic Animal Medicine and Management Faculty of Veterinary Medicine Cairo University, Giza.

Prof. Dr. Ausama Abd El-Raouf Abd El-Moneim

Professor of Virology Faculty of Veterinary Medicine Cairo University, Giza. Cairo University
Faculty of Veterinary Medicine
Aquatic Animal Medicine and Management Department

Name: Engy Taha Bayomy Mohamed Ibrahim

Date of birth: 19-11-1990 **Nationality:** Egyptian

Degree: PhD (Aquatic Animal Medicine and Management)

Under supervised of:

- Prof. Dr. Mohamed Abdelaziz Ahmed. Professor of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University.
- **Prof. Dr. Mohamed Moustafa Mohamed.** Professor of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University.
- **Prof. Dr. Ausama Abdel-Raouf Abdel-Moneim.** Professor of Virology, Faculty of Veterinary Medicine, Cairo University.

Thesis Title: Viral problems of Tilapia fish in Egypt

Abstract

Incidences of mortalities in cultured Nile tilapia (Oreochromis niloticus) have had a negative impact on the maintenance of many tilapia hatcheries and farms for the past few years. The socioeconomic structure of Egyptian aquaculture is severely affected due to fish loss, feed waste and loss of job opportunities. There is little information about pathogenic fish viruses in Egypt although members of twelve virus families have been identified worldwide in wild and farmed fish species causing drastic losses. Efforts were directed to investigate the possible viral causes of these massive infections. Therefore, the development of the synthetic positive control standard is crucial for the survey of viruses causing mortality in cultured tilapia as a rapid, affordable, and reliable molecular diagnostic assay. It was synthesized in silico allowed the amplification of fragments from nervous necrosis virus (NNV) RNA 2 and segment 9 of tilapia lake virus (TiLV) that reported to be threat to tilapia aquaculture. TilV RNA was not detected in any of the extracts tested using RT-PCR. NNV strains phylogenetically related to red-spotted grouper NNV were detected in three tilapia hatcheries in the period of investigation (2018-2019). Clinical signs of naturally infected fish were consistent with classical NNV infections (abnormal swimming behavior and skin darkening). Electron micrographs revealed virions in the retina and brain. NNV RNA was also detected in the brood stocks' brains and ovaries indicating the vertical transmission possibility. Experimental infection of NNV-free fries resulted in 100% morbidity and mortality. Since this is the first report of VNN-infections in African tilapia, different aspects of viral epidemiology and possible ways to break the epidemic wave and prevent future interspecies transmission events are discussed. VNN does not constitute a public health hazard because it is not transmitted from fish to humans. The disease is not a notifiable disease according to the OIE, and therefore it does not affect international fish trade (export and import between countries).

Keywords:

Oreochromis niloticus, Betanodavirus, Mass mortality, Electron microscopy, Hatchery-reared fries, Phylogenetic analysis, Brood stocks

Dedication

My deep thanks to

my Mother,

my Father,

my sister,

my brothers

and

my close friends

for their great cooperation and continuous support

during the whole work

<u>Acknowledgment</u>

All thanks to our merciful **ALLAH** who gave me all the graces I enjoy in my life. His magnificent help and compassion gave me the ability and patience to finish this work.

I would like to direct my sincere gratitude to **Prof. Dr.**Mohamed Abdelaziz Ahmed, Professor of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, for his precious supervision, infinite support, and endless encouragement during every single step that allowed me to finish my work smoothly, successfully and effectively.

I would like to express great thanks, deep gratitude and respect to my supervisor **Prof. Dr. Mohamed Moustafa Mohamed**, Professor of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, for his valuable advice, follow up, and continuous care.

I would like to express my deepest gratitude to **Prof. Dr.**Ausama Abd El-Raouf Abd El-Moneim Yousif, Professor of Virology, Faculty of Veterinary Medicine, Cairo University, for his precious supervision, endless donation and infinite support during every step that allowed me to finish my work smoothly and effectively. His guidance helped me all the time of this research. His immense knowledge and exceptional perspectives have changed my way of thinking. His vision was the cornerstone for each step and point of the thesis.

Thanks are also extended to **Dr. Basem Mohamed Abdel-Hamid Ahmed**, Lecturer of Virology, Faculty of Veterinary

Medicine, Cairo University for his continuous guidance and support for the work of the synthetic positive control.

Special great thanks and appreciation to **Mohamed Shawky**, master's degree in fish virology, Faculty of Veterinary Medicine, Cairo University for his kind support and great help and assistance regarding synthetic positive control.

LIST OF CONTENTS

Chapter (1): Introduction	1
Chapter (2): Review of literature	6
2.1- Status of Aquaculture in Egypt	6
2.2- Predisposing factors that cause emerging diseases i	n
tilapia	
2.3- Viral diseases of tilapia	14
2.3.1- Lymphocystis disease	16
2.3.2- Bohle iridovirus infection	17
2.3.3- Infectious spleen and kidney necrosis virus disease (IS	
2.3.4- Iridoviral-like infection	
2.3.5- Infectious pancreatic necrosis (IPN)	20
2.3.6- Spring viremia of carp	22
2.3.7- Viral encephalitis of tilapia larvae	23
2.3.8- Tilapia lake virus disease	25
2.3.9- Viral nervous necrosis (VNN)	38
2.4- Possible viral control methods	82
Chapter (3): Published paper	85
Chapter (4): Discussion	109
Chapter (5): Conclusion and Recommendation	118
Chapter (6): English Summary	120
Chapter (7): References	122
Appendix	170
الملخص العربي	1

LIST OF TABLES

Table (1). Reported viral disease of tilapia	15
Table (2). List of some susceptible species to NNV.	51
Tables in published paper	
Table 1. Primers used for RT-PCR	87

LIST OF FIGURES

Figure (1). Rooted maximum-likelihood phylogenetic tree for TiLV				
segment-3 nucleotide sequences, based on a general time-reversible and				
gamma-distributed rate heterogeneity (GTR_G) model of nucleotide				
substitution				
Figure (2). Betanodavirus Malabaricus grouper nervous necrosis virus				
particles41				
Figure (3). Electron microscope (EM) image and the overall structure				
of GNNV-like particle (GNNV-LP)44				
Figure (4). Schematic illustration showing genomic organization and				
replication of betanodavirus (Kibenge and Godoy, 2016) 46				
Figure (5). Phylogenetic analysis of betanodavirus capsid protein				
sequences				
Figure (6). Distribution of Nervous necrosis virus (NNV) genotypes 60				
Figure (7). Induction of the interferon (IFN) signaling pathway by				
Betanodavirus infection				
Figure (8). Naturaly VNN infected fries were showing skin darkening				
and eye opacity				
Figure (9). Netting enclosure for production of tilapia fries 108				
rigure ()). Nothing eliciosure for production of thupia free				
Figures of published paper				
Figure 1. Detection of NNV nucleic acid in fish				
tissues90 Figure 2. Phylogenetic relationships between Egyptian NNV sequences				
and representative sequences from other NNV				
genotypes91				
Figure 3. Electron micrographs of NNV-infected tissue of hatchery-				
reared tilapia fries92				
Figure 4. Molecular identification of viral nucleic acid in experimentally				
infected fish tissue extracts92				

Supplementary material

Online Resource (1). This video showed naturally NNV infected
hatchery reared fries with skin darkening and abnormal swimming
behavior (photo from the video)99
Online Resource (2). Reference sequence information used in
phylogenetic analysis100
Online Resource (3). Phylogenetic analysis 103
Online Resource (4). Nucleotide identity and divergence of Egyptian
NT NNV strains with all other strains listed (Online Resource 2) using
MegAlign® (DNASTAR 7.0) (Clewley and Arnold 1997) 104
Online Resource (5). Maximum Parsimony-based dendrogram
depicting the relationship between Egyptian NNV sequences and
representative sequences from other NNV genotypes105
Online Resource (6). Amino acid-based multiple alignment of Egyptian
and reference NNV sequences106
Online Resource (7). Amino acid identity and divergence of Egyptian
Nile tilapia NNV strains with all other strains listed in (Online Resource
2) using MegAlign® (DNASTAR, 7.0) (Clewley and Arnold 1997) 106
Online Resource (8). Experimentally infected fish showing skin
darkening and eye opacity characteristic of VNN107