

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سامية زكى يوسف

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

ROLE OF ECTOMYCORRHIZAE IN IMPROVING THE GROWTH OF WOODEN TREES UNDER ENVIRONMENTAL STRESS CONDITIONS

By

AYA GABER ALI AHMED

B.Sc. Agric. Sci. (General Agricultural Production), Fac. of Agric., Sohag Univ., 2015

A Thesis Submitted in Partial Fulfillment Of The Requirement for the Degree of

MASTER OF SCIENCE in Agricultural Sciences (Agricultural Microbiology)

Department of Agric. Microbiology Faculty of Agriculture Ain Shams University

Approval Sheet

ROLE OF ECTOMYCORRHIZAE IN IMPROVING THE GROWTH OF WOODEN TREES UNDER ENVIRONMENTAL STRESS CONDITIONS

By

AYA GABER ALI AHMED

B.Sc. Agric. Sci. (General Agricultural Production), Fac. of Agric., Sohag Univ., 2015

This thesis for M.Sc. degree has been a	pproved by :
Dr. Mohamed Fayez Foaad Prof. Emeritus of Agric. Microbiolog University.	gy, Faculty of Agriculture, Cairo
Dr. Enas Abd El-Tawab Hassan Prof. of Agric. Microbiology, Facu University.	ulty of Agriculture, Ain Shams
Dr. Mona Mohammed Saied Zayed Prof. of Agric. Microbiology, Facu University.	ulty of Agriculture, Ain Shams

Date of examination: / /2022

ROLE OF ECTOMYCORRHIZAE IN IMPROVING THE GROWTH OF WOODEN TREES UNDER ENVIRONMENTAL STRESS CONDITIONS

By

AYA GABER ALI AHMED

B.Sc. Agric. Sci. (General Agricultural Production), Fac. of Agric., Sohag Univ., 2015

Under the supervision of:

Dr. Shawky Mahmoud Selim

Prof. Emeritus of Agric. Microbiology, Department of Microbiology, Faculty of Agriculture, Ain Shams University (Principal Supervisor) (late).

Dr. Mona Mohammed Saied Zayed

Prof. of Agric. Microbiology, Department of Microbiology, Faculty of Agriculture, Ain Shams University.

Dr. Dalia Ahmed Abd El-Fattah

Researcher of Agric. Microbiology, Biological Agricultural Department, Central Laboratory for Agricultural Climate, Agricultural Research Centre.

ABSTRACT

Aya Gaber Ali Ahmed "Role of Ectomycorrhizae in Improving the Growth of Wooden Trees Under Environmental Stress Conditions". Unpublished M.Sc. Thesis, University of Ain Shams, Faculty of Agriculture, Department of Microbiology, 2022.

Twenty-three sporocarps (ECM fungal-like) grown near their host trees were obtained from various locations in Egypt. All Isolates were purified according to their morphological characteristics. Only seven isolates were purified isolates (D4, K10, M11, P13, S16, T17, and Pt23) were evaluated for ectomycorrhizal formation with Eucalyptus sp., Azadirachta sp., and Pinus sp. The isolates were identified using 18S rRNA and only three of them (K10, M11, and Pt23) were found to be Suillus collinitus, Protubera sp., and Pisolithus tinctorius, respectively. A comparative evaluation was performed on the effects of some environmental parameters such as type of carbon and nitrogen sources, pH, salinity, and incubation temperature on the mycelial growth of the strains. The growth patterns of the strains showed the maximum growth weight after 24–33 days. Moreover, the effect of different carbon and nitrogen sources revealed the maximum growth weight with glucose, soluble starch, diammonium phosphate, and asparagine. In addition, different pH levels in the form of dry weight and the strains' growth effects on the medium pH at the end of the incubation period revealed the optimum levels ranging from pH 5 to 7 for the tested strains, which were also able to change the used medium pH. The tested strains showed tolerance to a range of 0.5% – 4% NaCl, and the optimum temperature was proven to be 20°C-30°C. Finally, two greenhouse experiments were conducted to estimate the effect of ECM strains on the growth performance of Eucalyptus globulus and Eucalyptus citriodora under salinity stress conditions (6, 8, 10 dS/m) using two types of soils (sand & clay soil).

Keywords: Ectomycorrhizae, *Suillus collinitus*, *Protubera* sp., *Pisolithus tinctorius* and Environmental stresses.

ACKNOWLEDGMENT

There are few opportunities in most people's lives to demonstrate formally one's gratitude to people who have been mentors and supporters at different steps of our lives. Even though, we do not forget to stamp those feeling on paper.

I would like to express my deep indention to my supervisor (late) **Prof. Dr. Shawky Mahmoud Selim** (May Allah have mercy upon him), Professor Emeritus of Agric. Microbiology, Faculty of Agriculture., Ain Shams University, for his parental, scientific support, suggesting the problem and drawing the plan, valuable advice, expert guidance, and keen interest throughout this study.

I am highly grateful to **Prof. Dr. Mona Mohammed Saied Zayed**, Professor of Agric. Microbiology, Faculty of Agriculture., Ain Shams University, for her direct supervision, suggesting the problem and drawing the plan of work as well as her continuous advice and criticism during all the study period, as well as writing up the manuscript.

Special thanks are extended to **Dr. Dalia Ahmed Abd El-Fattah**, Researcher of Agric. Microbiology, Biological Agricultural Department, Central Laboratory for Agricultural Climate, Agricultural Research Centre for beneficial discussion and faithful help throughout this work as well as writing up the manuscript.

Sincere thanks are also extended to all my **Colleagues** and staff members of the **Microbial Inoculants Center**, Fac. Agric., Ain Shams Univ. for providing facilities and encouragement.

Sincere thanks to **Dr. Ola Hussein Abd Elbar** for her sincere help in sectioning and staining *Pinus* sp. root.

Finally, I have deep gratitude to all my family especially my parents for their continuous help and encouragement through this work.

CONTENTS

	Page
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	3
2.1. Classification of ectomycorrhizal fungi	3
2.2. Ectomycorrhizal association	3
2.3. Ectomycorrhizal host	4
2.4. Features of ECM roots	5
2.4.1. Mantle	5
2.4.2. Hartig net	5
2.4.3. The extraradical mycelium	6
2.5. Growth of ectomycorrhizal fungi in-vitro	6
2.5.1. Isolation of ectomycorrhizal fungi	6
2.5.2. Maintenance of ECM fungi	6
2.5.3. The nutrient requirements for ectomycorrhizal fungi	8
2.5.3.1.Carbon source	8
2.5.3.2. Nitrogen sources	9
2.5.3.2.1. Inorganic nitrogen sources	9
2.5.3.2.2. Organic nitrogen sources	9
2.5.3.3. Effect of pH on the fungal growth and mass	10
2.5.4. Identification of ECM fungi	11
2.5.5. Inoculation of plants with ectomycorrhizae	11
2.5.5.1.Inoculation by soil	11
2.5.5.2.Inoculation by fungal spores	12
2.5.5.3.Inoculation by vegetative mycelium	12
2.5.5.4.The selection of ectomycorrhizal inoculant	13
2.6. Formation ectomycorrhizal symbiosis	13
2.6.1. Precolonization	13
2.6.2. Development of symbiotic structure	15
2.6.3. Factors affecting ectomycorrhizal morphology	15
2.6.3.1.Tree genera	16

2.6.3.2.Fungal type	16
2.7. The mutual beneficial effects between ectomy corrhizal	16
fungi and their host plant	10
2.8. Mechanisms of nutrients exchanges between ECM fungi	17
and their host plants	1 /
2.8.1. Movement of carbohydrates from plant to	17
mycosymbionts	1 /
2.8.2. Nutrients uptake by mycosymbionts	18
2.8.3. Water uptake by mycosymbionts	20
2.9. Role of ECM fungi in reducing the effects of biotic and	21
abiotic stresses on plants	21
2.9.1. Abiotic stresses	21
2.9.1.1.Drought stress	21
2.9.1.2.Salt stress	22
2.9.1.3.The soil pH	23
2.9.1.4.Heavy metals	24
2.9.1.5.Climate change	25
2.9.1.5.1. Atmospheric CO2 enrichment	25
2.9.1.5.2. Temperature	26
2.9.2. Biotic stresses	27
2.10. The beneficial effect of ectomycorrhizal symbiosis on	28
soil	20
2.10.1. Change the chemistry of the mycorrhizosphere	28
2.10.2. Increase physical access <i>via</i> extra metrical hyphae	29
2.10.3. Influence on rhizospheric bacterial population	29
2.11. Ectomycorrhizal helper bacteria	29
3. MATERIALS AND METHODS	32
3.1. Material	32
3.1.1. Sources of isolates	32
3.1.2. Plants used	32
3.1.3. Soil used	32
3.1.4. Media and solution used	32

3.2. Methods	35
3.2.1. Sporocarps characterization	35
3.2.2. Isolation of ectomycorrhizal fungi from the sporocarps	35
3.2.3. Making spore prints	35
3.2.4. Formation of ectomycorrhizal associations in non-	36
aseptic condition	30
3.2.4.1. Determination of the mycorrhizal colonization using a	37
light microscope	31
3.2.4.2.Scanning electron microscope of ectomycorrhizal	37
roots	31
3.2.5. Ectomycorrhizal synthesis in sterile culture	38
3.2.5.1.Semithin sections of ectomycorrhizal root	38
3.2.6. Molecular identification of ectomycorrhizal isolates	39
3.2.6.1.DNA extraction	39
3.2.6.2. Selection of specific couples of primers	39
3.2.6.3.PCR amplification conditions	39
3.2.7. Assessment of some ectomycorrhizal physiological	40
activities	40
3.2.7.1.Growth pattern of ectomycorrhizal strains	40
3.2.7.2.Influence of different carbon sources on mycelium	40
growth	40
3.2.7.3.Influence of different nitrogen sources on mycelium	41
growth	41
3.2.7.4.Influence of different pH levels on mycelium growth	41
3.2.7.5.Influence of different temperatures on mycelium	41
growth	41
3.2.7.6.Influence of different salinity stress levels on mycelium	42
growth	42
3.2.8. Pot experiment	42
3.2.8.1.Plant growth parameters	42
3.2.8.2.Biochemical analysis	43
3.2.8.2.1. NPK and Na contents	43

3.2.8.2.2. Determination of chlorophylls and carotenoids	43
3.2.8.2.3. Determination of proline	44
3.2.8.2.4. Determination of soil EC and pH	44
3.2.9. Statistical analysis	44
4. RESULTS AND DISCUSSIONS	45
4.1. Morphological and microscopic characteristics of	45
collected sporocarps	43
4.2. Formation of ectomycorrhizal associations in non-aseptic	50
conditions	30
4.3. Aseptic synthesis of ectomycorrhizae (In vitro	56
mycorrhization)	50
4.4. Molecular identification of the ectomycorrhizal fungi	60
4.5. Growth pattern ectomycorrhizal strains	63
4.6. Effect of different carbon sources on mycelial growth	63
4.7. Effect of different nitrogen sources on mycelial growth	65
4.8. Effect of different pH level on mycelial growth	67
4.9. Effect of different temperatures on mycelial growth	70
4.10. Effect of different salinity stress levels on mycelial	71
growth	/ 1
4.11. Pot experiment	73
4.11.1. The growth performance, chlorophylls, carotenoids,	
proline, NPK, and Na of Eucalyptus globulus	72
cultivated in salty soil as affected by irrigation with	73
salted water and ECM strains	
4.11.1.1.pH and EC of sandy soil cultivated by Eucalyptus	77
globulus	77
4.11.2. Growth performance, chlorophylls, carotenoids,	
proline, NPK, and Na of Eucalyptus citriodora	0.1
cultivated on clay soil as affected by salted irrigation	81
water and ECM strains.	
4.11.2.1.pH and EC (dS/m) of clay soil cultivated by	Ο 4
Eucalyptus citriodora	84