

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سامية زكى يوسف

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

Cairo University Faculty of Veterinary Medicine Department of Theriogenology

Improving the developmental potential of vitrified/warmed dromedary camel oocytes

Thesis presented By

Karim Abdeltawab Yaqout Hassan

(B. V. Sc. Cairo University, 2016)

For the degree of M. V. Sc. (Theriogenology)

Under the supervision of

Dr. Abou-Bakr A. El-Wishy

Professor of Theriogenology
Faculty of Veterinary Medicine
Cairo University

Dr. Amr S. El-Shalofy

Dr. Magdy R. Badr

Lecturer of Theriogenology
Faculty of Veterinary Medicine
Cairo University

Professor of Reproductive Physiology

Department of AI and ET

Animal Reproduction Research Institute

Cairo University Faculty of Veterinary Medicine Department of Theriogenology

Super-vision sheet

Improving the developmental potential of vitrified/warmed dromedary camel oocytes

Under the supervision of

Dr. Abou-Bakr A. El-Wishy

Professor of Theriogenology
Faculty of Veterinary Medicine
Cairo University

Dr. Amr S. El-Shalofy

Dr. Magdy R. Badr

Lecturer of Theriogenology
Faculty of Veterinary Medicine
Cairo University

Professor of Reproductive Physiology

Department of AI and ET

Animal Reproduction Research Institute

Name: Karim Abdeltawab Yaqout Hassan

Nationality: Egyptian
Date of birth: 18/4/1993
Scientific degree: M. V. Sc.
Specialization: Theriogenology

Title of the thesis: Improving the developmental potential of vitrified/warmed dromedary camel oocytes

Supervisors:

Prof. Dr. Abou Bakr Abdelkader El-Wishy

Professor of Theriogenology - Faculty of Veterinary Medicine - Cairo University

Dr. Amr Salah El-Shalofy

Lecturer of Theriogenology - Faculty of Veterinary Medicine - Cairo University

Dr. Magdy Ramadan Badr

Professor of Reproductive Physiology - Department of AI and ET - Animal Reproduction Research Institute

Abstract

Vitrification of dromedary camel oocytes provides a potential resource for female gametes in face of seasonality of reproduction and low fertility. However, research on assisted reproductive techniques is still in its early stages in camels when compared to other farm animals. Cryoprotectant toxicity, osmotic imbalance, and oxidative stress are the main challenges during vitrification-warming procedures notably in oocytes due to high lipid and water contents. The experimental design herein was addressed to overcome the major challenges associated with the vitrification process to enhance the outcomes of this method post warming through: (I) reducing the CPAs quantity (II) osmolytes supplementation or (III) antioxidant supplementation, which consequently could improve the viability, maturation, cleavage, and blastocyst rates of vitrified/ warmed immature dromedary camel oocytes. For this purpose, 3366 dromedary camel cumulus-oocyte complexes (COCs) were aspirated from 1260 ovaries, obtained from a local abattoir (Cairo, Egypt) from February 2021 to May 2022. The COCs, with at least one to three layers of compact cumulus cells and a homogenous ooplasm were selected under a stereomicroscope and randomly allocated into groups according to each experiment applied as follows: The first experiment: The results showed that omitting trehalose from the vitrification solution (VS) could positively impact on the developmental potential of vitrified/warmed immature dromedary camel oocytes. The percentage of viable oocytes was significantly higher (P < 0.05) in VS without trehalose than in VS containing 0.5 mM trehalose. Nuclear maturation, cleavage (48 h postinsemination; pi), and blastocyst rates (7 days pi) were significantly higher (P < 0.05) in the trehalose-free group. No significant differences were observed in oocyte maturation and development rates between the trehalose-free group and control groups. The second experiment: The data revealed that supplementation of 1 mM of glycine to the vitrification solution of vitrified/warmed immature dromedary camel oocytes produced the best (P< 0.05) outcomes compared to the other concentrations tested (0.5- and 2-mM glycine) in the following parameters: viability (90%), nuclear maturation (75.7%), cleavage 48h- post-insemination (35.8%), blastocysts/oocyte (18.5%), and blastocysts/cleaved embryos rates (51.7%). The third experiment: Firstly, different concentrations of CoQ10 (25, 50, and 100 µM) were added to IVM media. The findings indicated that the concentration of 50 µM of CoQ10 significantly advanced cumulus cells' full expansion, MII, cleavage, and blastocyst rates. Based on these results, 50 µM of CoQ10 was used in the next experiment and added to VS and/or IVM, where; Vit ± (i.e., V.S ± CoQ10), IVM ± (i.e., IVM ± CoQ10). COCs were assigned randomly to one of four groups: a) Vit - / IVM - group (control); b) Vit + / IVM - group; c) Vit - / IVM + group; d) Vit + / IVM + group. The findings from such experiment revealed that Vit - / IVM + group showed improvement (P< 0.05) in the post-warming viability and preimplantation potential in vitro that were augmented by the highest (P< 0.05) TAC and the lowest (P< 0.05) MDA levels in the remaining media.

Keywords: Camel, CoQ10, Glycine, Trehalose, Oocytes, Vitrification.

Dedication

To My Father,

My Mother,

My Brothers,

My Lovely Sister,

and My Future Wife.

Acknowledgement

First and foremost, all acclamation and glory are for ALLAH. Thanks, ALLAH, for everything I have. Thanks for giving me the power and endurance to finish this work successfully.

My endless appreciation to my great supervisor **Prof. Dr. Abou. Bakr A. El-Wishy** Professor of Theriogenology, Faculty of Veterinary Medicine, Cairo University. Thanks, My Professor for your support, guidance, and your constructive criticism. I really appreciate his intensive comments that have helped me step by step throughout this study and his great help in revising and finishing this thesis indeed. I am very honored to work under his supervision.

My sincere thanks to **Dr. Amr S. El-Shalofy** Lecturer of Theriogenology, Faculty of Veterinary Medicine, Cairo University for his indispensable support, sincere cooperation in the practical part, thesis writing, valuable advice, and helpful assistance throughout the work. Great thanks for him as without him, this work would not have been really finished. I considered him the problem solver for me.

I pay my greatest respect and gratitude to **Dr. Magdy R. Badr** Professor of Reproductive Physiology in A.I. and E.T. Dept. Animal Reproduction Research Institute, for his valuable supervision, and sincere attitude.

I express my deep gratitude and heartfelt thanks to **Dr. A.R. Moawad** for his continuous support throughout the work, his excellent ideas, and sincere cooperation in the practical and theoretical parts of the thesis. I appreciate the little time spent with you in the lab and I'm looking forward to repeating this again.

I pay my greatest respect and gratitude to **Dr. W.F. Marie** for his smart priceless help in providing chemicals and lab facilities renovation. He is a role model for us.

I'm really grateful and beholden to **Dr. Ahmed Anwar**, Head of Sakkara abattoir for his kind cooperation and help in sample collection throughout this work.

I am greatly indebted to all my professors, colleagues, and workmen in the department of Theriogenology for their willing assistance cooperation, and friendly atmosphere.

Finally, I would like to thank my family. Thank you, my mother, father, brothers, and sister for your moral support and constant encouragement that have been the driving force behind my efforts and responsible for whatever I am today. I love you very much and hope that I can repay you someday for everything you have done for me.

CONTENTS

Abstract	
Dedication	
Acknowledgments	
Contents	i
List of Tables	iv
List of Figures	vi
List of abbreviations	vii
Chapter (1): Introduction	1
Chapter (2): Review of literature	6
2. 1. Assisted reproductive technologies	6
2. 1.1. Artificial insemination	7
2. 1.2. Embryo transfer	7
2. 1.3. In vitro embryo production technology	8
2. 1.3.1 Collection of cumulus oocyte complexes (COCs)	8
2. 1.3.2. Maturation of oocytes	10
2. 1.3.3. In vitro fertilization	13
2. 1.3.4. In vitro embryo culture	15
2. 2. Conservation of animal genetic resources	17
2. 2.1. Strategies for Farm Animal Genetic Conservation	18
2. 3. Fertility preservation.	19
2. 3. 1. Semen cryopreservation	19
2. 3.2. Embryo cryopreservation	20
2. 3.3. Ovarian tissue cryopreservation	22
2. 3.4. Oocyte Cryopreservation	23
2. 3.4.1. Special characteristic features for oocytes	23
2. 4. Principles of cryopreservation	25
2. 5. Methods of cryopreservation	25
2. 5.1. Slow freezing method	26
2. 5.2. Vitrification	27

2. 6. Cryoprotectants (CPAs)	•••••
2. 7. Cryodevices	
2. 8. Advantages and disadvantages of vitrification	
2. 8.1. Osmotic stress during oocyte vitrification	
2. 8.2. Oxidative stress during oocyte vitrification	
Chapter (3): Published papers	
3.1. Impact of presence or absence of trehalose d	luring
vitrification on viability and development of vitrified/wa	armed
immature dromedary camel oocytes	••••
Abstract	
1. Introduction	
2. Materials and methods	
3. Results	
4. Discussion	
5. References	
6. Tables and figures	
3.2. Impacts of adding glycine to vitrification solutions	on the
developmental potential of vitrified/warmed imm	nature
dromedary camel oocytes in vitro	••••
Abstract	• • • • • •
1. Introduction	
2. Materials and methods	
3. Results	
4. Discussion.	
5. References	• • • • • •
6. Tables and figures	
3.3. Coenzyme Q10 supplementation during in	vitro
maturation and/or vitrification of Dromedary camel imm	ıature
oocytes promotes their developmental competence	
Abstract	• • • • • •
1 Introduction	