

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سامية زكى يوسف

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

Association Between *GLIS3* rs7020673 Polymorphism and Type 2 Diabetes Mellitus among Egyptian Population

Thesis

Submitted for Partial Fulfillment of M.D. Degree in Clinical Pathology

By

Lubna Ezz Eldin Mohamed

M.B., B.Ch, M.Sc in Clinical Pathology Faculty of Medicine, Ain Shams University

Under Supervision of

Prof. Eman Saleh El Hadidi

Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Prof. Wessam El Sayed Saad

Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Prof. Maram Mohmed Maher Mahdy

Professor of Internal Medicine and Endocrinology Faculty of Medicine - Ain Shams University

Assist. Prof. Walaa Ahmed Yousry

Assistant Professor of Clinical Pathology Faculty of Medicine - Ain shams University

> Faculty of Medicine Lin Shams University

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I would like to express my indebtedness and deepest gratitude to **Prof. Eman Saleh & Thadidi**, Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, **put peace on her soul**, for her valuable advice, guidance and constructive criticism, also for the invaluable assistance and efforts she devoted in the supervision of this study.

I'll never forget, how co-operative was **Prof. Wessam & Sayed Saad**, Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, also she was encouraging all the time. It is honorable to be supervised by her.

I would like also, to express my great thanks to **Prof.**Maram Mohmed Maher Mahdy, Professor of Internal Medicine and Endocrinology, Faculty of Medicine, Ain Shams University, her valuable advises and continuous support facilitated completing this work.

I would like also, to express my great thanks to Assist.

Prof. Walaa Ahmed Yousry, Assistant Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, her valuable advises and continuous support facilitated completing this work.

I would like to express my appreciation and gratitude to all my family, especially my caring and loving parents who enlighten my life.

Finally, I want to thank **my husband**, his support meant a lot to me. I want to thank him for helping me and for his patience all through the way.

I would like to thank all the staff members of the Clinical Pathology department.

Tist of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	v
List of Figures	vi
Introduction	1
Aim of the Work	3
Review of Literature	
I: Type 2 Diabetes Mellitus	4
A. Epidemiology of T2DM	4
B. Risk Factors for T2DM	5
C. Pathophysiology of T2DM	10
D. Complications of T2DM	
E. Diagnosis of T2DM	16
II: GLI-Similar 3	24
A. GLIS3 Gene	24
B. Structure of the GLIS3 protein	25
C. Mechanism of Action of GLIS3 Protein	27
D. Regulation of GLIS3 Protein	29
E. Role of GLIS3 Protein in Diabetes	32
F. GLIS3 Gene Polymorphism in Diabetes	36
G. Other Diseases Associated with GLIS3 Gene Polyn	norphism . 37
H. Methods of Assay of GLIS3 rs7020673 Polymorphism	41
Subjects and Methods	47
Results	69
Discussion	77
Summary and Conclusion	86
Recommendations	
References	89
Arabic Summary	1

Tist of Abbreviations

Abb.	Full term
2-h PG	2-h Plasma Glucose
	American Diabetes Association
	Acute Lymphoblastic Leukaemia
	Acute Megakaryoblastic Leukaemia
	Breast cancer antiestrogen resistance 1
	Bcl-2 interacting mediator of cell death
	Bcl-2 interacting mediator of cell death Short
	isoform
BMI	Body Mass Index
C2H2	
CBD	C-terminal Binding Protein
CCND2	Cyclin D2
CDK5	Cyclin Kinase 5
CDKAL1	CDK5 regulatory subunit associated protein
	1-like 1
CI	Confidence interval
	Chronic kidney disease
CLIA	Chemiluminescence immunoassay
	Cordon-Bleu WH2 Repeat Protein
	Cardiovascular disease
	DNA-binding Domain
	Diabetes Control and Complications Trial
DM	
	Ubiquitin-activating enzyme
	Ubiquitin-conjugating enzyme
	Ubiquitin-protein ligase
	Enzyme-linked immunosorbent assay
	Endoplasmic reticulum
	End-stage renal disease
	Fluorescein amidites
	Fasting Plasma Glucose
	Fibroblast growth factor 18
FOXA2	
FT4	Free thyroxine

Tist of Abbreviations cont...

Abb.	Full term
GA	Glycated albumin
	Gestational diabetes mellitus
GLIS3	
	GLIS3-response elements
GLISBS	
	Genome-wide association studies
H	
Hb A1c	Glycated hemoglobin A1c
	Hepatocellular carcinoma
Hh	
	Human Leukocyte Antigen
HNF1β	Hepatocyte nuclear factor 1β
HNF6	Hepatocyte nuclear factor 6
HOMA	Homeostatic model assessment
HPLC	High-performance liquid chromatography
HPLC-UV	High performance liquid chromatography
	coupled with ultraviolet detection
	Streptavidin-horse radish peroxidase
	Highly-significant difference
HTN	
IA	
	International Diabetes Federation
	Impaired fasting glucose
	Impaired glucose tolerance
Ins2	
IR	
	Kidney Disease: Improving Global Outcomes
	Liquid chromatography with tandem mass
	spectrometry
	Melatonin receptor 1B
	Neonatal diabetes and congenital
	hypothyroidism
	Non-fluorescent quencher
NGN3	Neurogenin 3

Tist of Abbreviations cont...

Abb.	Full term
NGS	Next generation sequencing
	National Glycohemoglobin Standardization
11001	Program
NRD	N-terminal Repressive Domain
	Non-significant difference
OGTT	Oral glucose tolerance test
OR	Odds ratio
P -value	Probability
	Polymerase chain reaction-restriction
	fragment length polymorphism
PDX1	Pancreatic duodenal homeobox 1
PIAS4	Protein Inhibitor of Activated STAT 4
PKC	Protein Kinase C
PPARG	Peroxisome proliferator-activated receptor-
	gamma
PPxY	Proline- Proline-x-Tyrosin
Prox1	Prospero homeobox protein 1
Ptch	Protein patched homolog
qPCR	Quantitative polymerase chain reaction
RCC	Renal cell carcinoma
real-time PCR	Real-time polymerase chain reaction
RIA	Radioimmunoassay
ROS	Reactive oxygen species
S	Significant difference
Shh	Sonic Hedgehog
SMAD2	Suppressor of Mothers against
	Decapentaplegic
Smo	Smoothened
SNP	Single nucleotide polymorphism
SNPs	Single nucleotide polymorphisms
SRP55	Splicing factor protein 55
SUFU	Suppressor of Fused
	Type 1 diabetes mellitus
T2DM	Type 2 diabetes mellitus

Tist of Abbreviations cont...

Abb.	Full term
TAD	.Transactivation Domain
TCF7L2	.Transcription factor 7-like 2
TGFβ	. Transforming growth factor β
TMB	.Tetra methyl benzidine
TSH	.Thyroid-stimulating hormone
VIC	.Victoria blue dye 2`-chloro-7`phenyl-1, 4-
	dichloro-6- carboxy- fluorescein
WFS1	.Wolfram syndrome 1
WHO	.World Health Organization
WNT	. Wingless related integration site
WWTR1	.WW domain containing transcription
	regulator 1
X^2	.Chi-Square Test
Z	.Wilcoxon`s Rank-Sum Test
ZF	.Zinc finger

Tist of Tables

Table No.	Title Page No.	
Table 1:	Examples of Genetic Loci Associated with T2DM and their Mechanisms	9
Table 2:	Criteria of Prediabetes	17
Table 3:	Diagnostic Criteria for Diabetes	17
Table 4:	Thermal Cycling Protocol	59
Table 5:	Relation between Fluorescence Signals and Sequences in a Sample	60
Table 6:	Reagents of Cycle Sequencing	62
Table 7:	Sequencing Thermal Profile	63
Table 8:	Descriptive and Comparative Statistics of the various Studied Parameters between Diabetic Patients (Group I) versus Healthy Controls (Group II) using Wilcoxon's Rank-Sum Test	71
Table 9:	Descriptive and Comparative Statistics of the Genotypic Frequency of <i>GLIS3</i> rs7020673 C>G Polymorphism in Diabetic Patients (Group I) versus Healthy Controls (Group II) using Chi-Square Test	72
Table 10:	Association Analysis of <i>GLIS3</i> rs7020673 Genotypes in (Group I) versus (Group II)	
Table 11:	Descriptive and Comparative Statistics Between Diabetic Patients (Group I) versus Healthy Controls (Group II) Regarding Allele Frequencies of <i>GLIS3</i> rs7020673 Polymorphism Using Chi-Square Test	74
Table 12:	Comparative Statistics between the <i>GLIS3</i> rs7020673 Genotypes among Diabetic Patients in Respect to Different Demographic and Laboratory Findings using Kruskal-Wallis Test	75

List of Figures

Fig. No.	Title	Page No.
Figure 1:	β-Cell function and mass continue course of type 2 diabetes	
Figure 2:	Prognosis of CKD by GFR categories	
Figure 3:	Human GLIS3 gene and prote	ein structures25
Figure 4:	GLIS3 functional domains proteins	•
Figure 5:	Sonic Hedgehog (Shh) signalia	ng pathway30
Figure 6:	Molecular actions of GLIS3 in	type 2 diabetes33
Figure 7:	Schematic representation spectrum caused by <i>GLIS</i> gen	
Figure 8:	Schematic diagram of PCR-RI	FLP approach42
Figure 9:	How stuff works: NGS an over	rview45
Figure 10:	Genomic DNA extraction prod	cedure56
Figure 11:	Illustration of the principle PCR allelic discrimination to fluorescence emission	through different
Figure 12:	Steps of Sanger Sequencing	61
Figure 13a:	Detection of <i>GLIS3</i> ho mutation using Sanger Seque	
Figure 13b:	Detection of GLIS3 het mutation using Sanger Seque	
Figure 14:	Genotype frequencies of <i>G</i> polymorphism in diabetic healthy controls	patients versus
Figure 15:	GLIS3 rs7020673 genotype HBA1c percentage	s in respect to76

Introduction

ype 2 diabetes mellitus (T2DM) is a heterogeneous metabolic disease characterized by glucose intolerance, which seems to result from the combined effects of insulin resistance and a failure of the pancreatic β -cells to compensate for the increased demand of insulin (Alexandra et al., 2017).

Type 2 diabetes mellitus (T2DM) represents a global major healthcare burden. According to the International Diabetes Federation (IDF), Egypt is in the World's 8th place in terms of diabetes incidence, affecting up to 8.2 million people. By the year 2045, Egypt is expected to be in the 6th place, with about 16.7 million diabetic patients and will represent the highest incidence in the Middle East and North Africa region. Therefore, it is crucial to understand the mechanisms that contribute to the pathogenesis of DM (International Diabetes Federation, 2017).

Type 2 diabetes mellitus (T2DM) is a multi-factorial disease, genetic and environmental factors as well as life style have been considered as major risk factors in the development of T2DM (Hasan et al., 2018). However, it is supposed that the environmental factors and life style changes may lead to T2DM only in the presence of predisposing genetic factors to the disease. Great efforts have been made to identify the different genes associated with the risk of development of T2DM (Prabhanjan et al., 2016).

The GLI-similar 3 (GLIS3) gene codes for a Krüppel-like zinc finger transcription factor that is located in a nuclear compartment of the cell and in the Golgi complex and is highly expressed in beta cells. It controls gene transcription through Glis3-binding sites (GLISBS) in regulatory regions of the target genes (Guilherme et al., 2017).

Growing evidence indicates that GLIS3 plays a critical role in pancreatic cell lineage specification, particularly in the development of mature beta cells. GLIS3 is also important to beta cell mass maintenance and regulation of insulin expression in adults (Guilherme et al., 2017). GLIS3 may function as a celltype-dependent trans activator or repressor and may protect pancreatic β cells against apoptosis (Wen and Yang, 2017).

Single nucleotide polymorphism (SNP) is a variation at a single position in a DNA sequence among individuals (Matsuda, (rs7020763) which shows reduced GLIS3 **2017**). GLIS3 expression was found to modulate the alternative splicing of the pro-apoptotic protein, promoting the expression of apoptosis of the β cell and β cell death. These data suggest that proper GLIS3 expression could be required for β cell survival (Wen and Yang, *2017*).

AIM OF THE WORK

The aim of the present study is to investigate the potential association between the *GLIS3* (rs7020763) gene polymorphism and type 2 diabetes mellitus and its impact on glycemic control among Egyptian population.

Type 2 Diabetes Mellitus

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by persistent hyperglycemia. It may be due to impaired insulin secretion, resistance to peripheral actions of insulin, or both (*Goyal and Jialal*, 2022).

A. Epidemiology of T2DM:

According to the International Diabetes Federation (IDF), in 2021, diabetes caused 6.7 million deaths; and 537 million adults aged between 20 and 79 years old were living with diabetes, a number that will likely rise up to 783 million by 2045. (*International Diabetes Federation*, 2021). The World Health Organization (WHO) Global report on diabetes shows that the number of adults living with diabetes has almost quadrupled since 1980 to 422 million adults (*WHO*, 2019).

Egypt is in the world's tenth place in terms of diabetes incidence, affecting up to 10.9 million people in 2021. By the year 2045, Egypt is expected to be in the ninth place, with about 20 million diabetic patients, due to the rapidly increasing and aging population, which will be one of the highest incidence rates in the Middle East and North Africa regions. It was estimated that there were about 6.8 million undiagnosed diabetic cases in Egypt. DM represents a huge economic burden, in 2021; the IDF estimated the total healthcare expenditure worldwide on diabetes to reach 966 billion dollars, meanwhile in Egypt, the healthcare