

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سامية زكى يوسف

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

Renal Assessment in the Setting of Pediatric Living Related Liver Transplantation

Thesis

Submitted for Partial Fulfillment of Master Degree in Pediatrics

By Marianne Atef Shaker Shenouda

M.B.B.Ch - Faculty of Medicine - Alexandria University (2008)

Supervised By

Dr. Tawhida Yassin AbdelGhaffar

Professor of Pediatrics
Faculty of Medicine - Ain Shams University

Dr. Ragia Marei Ali Said

Assistant Professor of Pediatrics Faculty of Medicine -Ain Shams University

Dr. Noha Refaat Mohamed

Assistant Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Faculty of Medicine - Ain Shams University 2022

Acknowledgment

First and foremost, I feel always indebted to **Allah**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to Dr. Tawhida Yassin AbdelGhaffar, Professor of Pediatrics - Faculty of Medicine - Ain Shams University, for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Dr. Ragia Marei Ali Said, Assistant Professor of Pediatrics - Faculty of Medicine -Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Noha Refaat Mohamed**, Assistant Professor of Clinical Pathology - Faculty of Medicine - Ain Shams University, for her great help, active participation and guidance.

I would like to express my gratitude to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients who participated in this study.

Marianne Atef Shaker Shenouda

List of Contents

Title	Page No.
List of Abbreviations	iv
List of Tables	vii
List of Figures	ix
Introduction	
Aim of The Work	2
Review of Literature	
Pediatric Liver Transplantation	3
Renal Condition after Liver Transplantation	38
Assessment of Kidney Function in Children	57
Patients and Methods	88
Results	95
Discussion	122
Summary	
Conclusion	
Recommendation	
References	
Arabic Summary	

List of Abbreviations

Abb.	Full term
AKIN	.Acute Kidney Injury Network
	Alanine amino transferase
ANOVA	.Analysis of variance
APOLT	.Auxilliary partial orthotopic LT
	Atherosclerosis Risks in Communities
ARPKD	.Autosomal recessive polycystic kidney disease
	·Aspartate amino transferase
B2M	Beta-2-microglobulin
BTP	Beta-trace protein
CHS	.Cardiovascular Health Study
CKD	.Chronic kidney disease
CMS	Center for Medicaid and Medicare Services
CMV	.Cytomegalovirus
CNI	.Calcineurin inhibitors
CNIs	.Calcineurin inhibitors
CTS	.Collaborative transplant study
DDLT	.Countries deceased-donor liver transplant
e	.Estimated
EBV	Epstein-Barr virus
ECM	Extracellular matrix
eGFR	Estimated GFR
eGFR	Estimated glomerular filtration rate
ELISA	Enzyme-linked immunosorbent assay
	End-stage liver disease
FDA	Food and Drug Administration
GD	.Graves' Disease
GFR	.Glomerular filtration rate

List of Abbreviations Cont...

Abb.	Full term
GGTP	Gamma-glutamyl trans peptidase
	Glutamate dehydrogenase
	Graft-recipient body weight ratio
HAS	
HAT	HA thrombosis
HS	Highly significant
HTN	Hypertension
	Intensive Care Unit
IDMS	Isotope dilution mass spectroscopy
	Immunoglobulin A nephropathy
KDIGO	Kidney Disease Improving Global Outcomes
LDLT	Living-donor-LT
LFTs	Liver function tests
LOS	Length of stay
LRLT	Liver transplanted children
LT	Liver transplantation
LTx	Liver transplantation
MCTs	Medium-chain triglycerides
MDRD	Modification of Diet in Renal Disease
MELD	Model for End Stage Liver Disease
mGFR	Measured GFR
MHC	Major histocompatibility complex
MMF	Mycophenolate mofetil
mTOR	Mammalian target of rapamycin
NS	Non-significant
PCR	Polymerase chain reaction
PELD	Pediatric Model for End Stage Liver Disease

List of Abbreviations Cont...

Abb.	Full term
РКС-в	Protein kinase C beta
pLT	
_	Pediatric RIFLE
-	Percutaneous transluminal angioplasty
	Post transplant lymphoproliferative disorder
	Post-transplant lymphoproliferative disorders
-	Risk, Injury, Failure, Loss of kidney function, and End-stage kidney disease
ROC	Receiver-operating characteristics
RRT	Replacement therapy
S	Significant
	Standard deviation
SFS	Small for size graft syndrome
	Studies of Pediatric LT
SPSS	Statistical Package for the Social Science
TAC	
	Transforming growth factor beta 1
•	Urea cycle defect
	University of California, Los Angeles

List of Tables

Table No.	Title	Page No.
Table (1):	Diseases indicating pediatric transplantation	
Table (2):	Endogenous GFR markers	60
Table (3):	$Method\ of\ gold-standard\ GFR\ measure$	ement 81
Table (4):	The gender and age distribution of the group	
Table (5):	The etiological diagnosis of the studied	group96
Table (6):	The CHILD and PELD Score of the group at the time of transplantation	
Table (7):	The operative and graft data of the group	
Table (8):	The Duration of ICU and hospital stated group	
Table (9):	The Immediate Postoperative complewithin the first week of transplantation	
Table (10):	The growth state of the studied group time of sampling.	-
Table (11):	The vital signs of the studied group time of sampling	
Table (12):	History of infection with EBV and CM studied group	
Table (13):	The clinical findings indicative o affection in the studied group	
Table (14):	The Urine analysis of the studied groutime of sampling	-
Table (15):	The postoperative FK dose and levels time of sampling	
Table (16):	The postoperative laboratory investigathe studied group	

List of Tables Cont...

Table No.	Title	Page No.
Table (17):	Comparison between preoper postoperative renal and laboratory investigations of the st	electrolytes
Table (18):	The pre and postoperative ultra assessment of the studied group.	
Table (19):	The post transplantation risk factories affection of the studied group	
Table (20):	The postoperative eGFR results a values of eGFR	-
Table (21):	The eGFR results and follow teGFR along different durations po	<u> </u>
Table (22):	Renal function assessment using biomarkers	
Table (23):	Comparison of Cystatin-C and microglobulin between patients as	•
Table (24):	The Risk of progression to CKD National, Kidney Foundation	_
Table (25):	The Urinary B2 microglobu Creatinine and Cystatin C different durations post-LT	levels along
Table (26):	Correlation between creatinine l patients' parameters	
Table (27):	Correlation between Cystatin patients' parameters	
Table (28):	Correlation between Urinary B2 and the patients' parameters	•

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Development of graft survival after liver transplantation from 1985 (collaborative transplant study date	until 2013
Figure (2):	Age distribution of pediate transplantation recipients from 2013 (collaborative transplant students)	1985 until
Figure (3):	Donor age within the Euro network in 2013.	-
Figure (4):	Relation of living (purple) vs deceded donors in pediatric liver transplant 1985 until 2013 (collaborative study data). CTS: Collaborative study; LT: Liver transplant	tation from transplant transplant
Figure (5):	Nephrotoxic mechanisms of calcineurin inhibitor exposure	-
Figure (6):	Chemistry of creatinine molecule	61
Figure (7):	Scatter dot showing the positive between Creatinine level and the since LT	e duration
Figure (8):	Scatter dot showing the negative between Creatinine level and the macroglobulin.	urinary B2
Figure (9):	Scatter dot showing the correlation Cystatin C level and the duration s	
Figure (10):	Scatter dot showing the correlation Cystatin C level and the eGFR at s	

Introduction

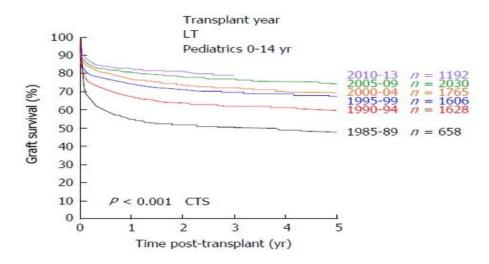
iver transplantation in the pediatric age group has become Athe last resort and yet the preferred option for many end stage liver disorders. This field has shown a great improvement and is considered a breakthrough achievement for previously fatal liver diseases.

In view of the fact that survival rate following liver transplantation has greatly improved over the past three decades, chronic renal insufficiency has become a vital and crucial problem, which increases the complexity of patient management and may in turn influence the survival rate (Wenger et al., 2013; Basiratnia et al., 2020).

The data available regarding the assessment of renal function in the setting of pediatric LRLT are limited unlike that of the adults. Moreover, a variety of studies have demonstrated that a calculated glomerular filtration rate (GFR) based on serum creatinine is inaccurate, especially in pediatric age group (Anastaze et al., 2012). Hence, this study will be used to determine the incidence of chronic renal insufficiency using more reliable renal testing techniques such as Cystatin C which was shown to be a better marker of GFR than creatinine, creatinine clearance, or eGFR for assessment of renal impairment (Seronie-Vivien et al., 2008).

Aim of the Work

- **Primary:** To determine the incidence of renal dysfunction among pediatric LT recipients using more reliable renal testing methods.
- **Secondary:** To determine the risk factors of renal dysfunction.


Chapter 1

Pediatric Liver Transplantation

n 1953, the pioneer of human orthotopic liver transplantation (LT), Thomas E Starzl, was the first to attempt an orthotopic liver transplant into a 3 years old patient suffering from biliary atresia. Thus, the first LT in humans was attempted in a disease, which, up until today, remains the main indication for pediatric LT (pLT). During the last sixty-eight years, refinements in diagnostics and surgical technique, the introduction of new immunosuppressive medications and improvements in perioperative pediatric care have established LT as routine procedure for childhood acute and chronic liver failure as well as inherited liver diseases.

In contrast to adult recipients, pLT differs greatly in indications for LT, allocation practice, surgical technique, immunosuppression and post-operative life-long aftercare. Many aspects are focus of ongoing preclinical and clinical research (*Christina et al.*, 2015)

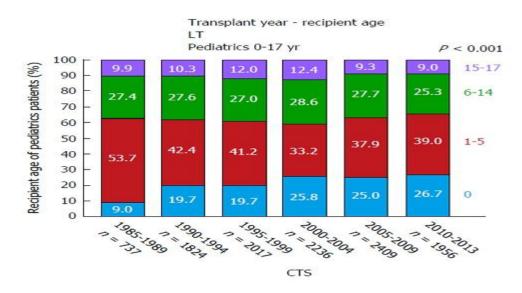

LT is the only curative treatment option for patients with irrevocable acute or chronic liver failure and, in the last six decades, has developed from an experimental approach with very high mortality to an almost routine procedure with good short and long-term survival rates. In the early years, long-term survival rates after pediatric LT (pLT) were 11% - 39% (*Pichlmayr et al.*, 1984) and, since then, have improved to up to 90% with long-term graft survival rates of > 80% (*Yazigi*, 2013).

Figure (1): Development of graft survival after pediatric liver transplantation from 1985 until 2013 (collaborative transplant study data). CTS: Collaborative transplant study; LT: Liver transplants.

Due to continuing improvements of surgical and interventional techniques as well as perioperative neonatal and pediatric intensive care medicine, the average age of pediatric transplant recipients has steadily declined, with a continuous increase of patients transplanted within the first year of life. As of today, approximately 27% of pLT are performed in recipients younger than 12 months. Patients in this young age, which in former years could not be transplanted (and mostly died before reaching the size and age of transplant ability), today show a long-term survival of almost 90%, which is comparable to older children.

At the same time, long-term survival after pLT implies lifelong aftercare in an interdisciplinary team to ensure a life with as little as possible secondary morbidity (*Christina et al.*, 2015).

Figure (2): Age distribution of pediatric liver transplantation recipients from 1985 until 2013 (collaborative transplant study data). CTS: Collaborative transplant study; LT: Liver transplants.

Liver transplantation indications:

Indications for LT in pediatric patients are manifold and can be classified into cholestatic disorders, metabolic liver diseases causing liver cirrhosis, metabolic liver diseases without liver cirrhosis, acute liver failure, acute and chronic hepatitis, and liver tumors. With approximately 40%, the main indication for pLT is biliary atresia. Thus, the indications for pLT are significantly different to indications in adult LT recipients (*Melter et al.*, 2012).