

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سامية زكى يوسف

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

MM-WAVE POWER AMPLIFIERS FOR 5G APPLICATIONS AND DIFFERENT POWER COMBINING TECHNIQUES

By

Mohamed Alaa Elgamal

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

MM-WAVE POWER AMPLIFIERS FOR 5G APPLICATIONS AND DIFFERENT POWER COMBINING TECHNIQUES

By

Mohamed Alaa Elgamal

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

Under the Supervision of

Dr. Mohamed A. Y. Abdalla

Assistant Professor

Electronics and Communications Engineering Faculty of Engineering , Cairo University

MM-WAVE POWER AMPLIFIERS FOR 5G APPLICATIONS AND DIFFERENT POWER COMBINING TECHNIQUES

By

Mohamed Alaa Elgamal

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

in

Electronics and Communications Engineering

Approved by the Examining Committee	:
Dr. Mohamed A. Y. Abdalla,	Thesis Main Advisor
Prof. Ahmed N. Mohieldin,	Internal Examiner
Prof. Mohamed A. El-Nozahi, Associate Professor	External Examiner
Faculty of Engineering, Ain Shams Univ	versity

FACULTY OF ENGINEERING ,CAIRO UNIVERSITY GIZA,EGYPT 2022 **Engineer's Name:** Mohamed Alaa Elgamal

Date of Birth: 21/12/1994 **Nationality:** Egyptian

E-mail: mohamed.alaa.elgamal@gmail.com

Phone: +20 1119082892

Address: 14 Mahmoud Zaky St., Helwan, Cairo

Registration Date: 1/3/2018 **Awarding Date:** -/-/2022

Degree: Master of Science

Department: Electronics and Communications Engineering

Supervisors:

Dr. Mohamed A. Y. Abdalla

Examiners:

Dr. Mohamed A. Y. Abdalla(Thesis main advisor)**Prof. Ahmed N. Mohieldin**(Internal examiner)**Prof. Mohamed A. El-Nozahi**(External examiner)

Associate Professor

Faculty of Engineering, Ain Shams University

Title of Thesis:

mm-Wave Power Amplifiers for 5G Applications and Different Power Combining Techniques

Key Words:

Power Amplifiers; Power combining; 5G; Beamformers

Summary:

Design trade-offs and challenges facing 5G power amplifiers are presented in this work. Different power amplifier classes are compared for 5G applications. Stacking transistors and Combining multiple power cells are discussed as a solution to achieve higher power levels without sacrificing efficiency or over-stressing the amplifier. Various properties of different power combining techniques like efficiency and impedance transformation are analyzed in depth and proper design guidelines are provided. The design of a fully differential two-stage two-way current combining power amplifier with an integrated transformer-based balun fabricated using CMOS technology to cover both n260 39GHz 5G (37G to 40GHz) and n259 41GHz 5G (39.5G to 43.5GHz) bands is discussed and the measurement results are presented.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Mohamed	d Alaa Abdelaz	ziz Mejahed Elgamal	Date: /	/ 2022

Signature:

Acknowledgements

In the name of Allah the most merciful the most gracious; all thanks to Allah the Lord of the Heavens and Earth and peace be upon Mohamed and his companions. I wish to express my gratitude to Dr. Ahmed I. Khalil who offered invaluable assistance, support and guidance. I am also genuinely blessed to have Dr. Mohamed A. Y. Abdalla and Prof. Ahmed N. Mohieldin as members of the supervisory committee, for their great efforts and constant care.

Special thanks to Prof. Mohamed A. El-Nozahi and the RF team at Analog Devices, Egypt.

Table of Contents

וע	SCIAII	1161		1
A	cknov	vledgen	nents	ii
Ta	ble o	f Conte	nts	iii
Li	st of '	Tables		vi
Li	st of]	Figures		vii
Li	st of S	Symbol	s and Abbreviations	X
Li	st of l	Publica	tions	xi
Al	bstrac	et		xii
1	INT	RODU	CTION	1
	1.1	The E	volution of Wireless Network Technology in Mobile Communication	on 1
	1.2	What i	is 5G?	. 2
	1.3	5G app	plications	. 2
	1.4	Thesis	Organization	. 3
2	BEA	AMFOR	RMING AND POWER AMPLIFIERS FOR MM-WAVE 5G	4
	2.1	5G mr	m-wave Beamforming	. 5
		2.1.1	Beamforming	. 6
			2.1.1.1 Analog Beamforming	. 7
			2.1.1.2 Digital Beamforming	. 8
			2.1.1.3 Hybrid digital-analog Beamforming	. 9
	2.2	Power	Amplifier Requirements for 5G systems	. 11
3	FUN	NDAME	ENTALS OF POWER AMPLIFIERS	13
	3.1	Power	Amplifier performance metrics	. 13
		3.1.1	Efficiency of Power Amplifiers	. 13
		3.1.2	Linearity of Power Amplifiers	. 14

			3.1.2.1 AM-AM conversion	14
			3.1.2.2 AM-PM conversion	15
	3.2	An Ov	verview of PA Classifications	15
		3.2.1	Class-A Power Amplifiers	16
		3.2.2	Class-B Power Amplifiers	16
		3.2.3	Class-AB Power Amplifiers	17
		3.2.4	Class-C Power Amplifiers	18
		3.2.5	Class-D Power Amplifier	18
		3.2.6	Class-E Power Amplifier	19
		3.2.7	Class-F Power Amplifier	20
4	POV	VER A	MPLIFIERS DESIGN AND POWER COMBINING TECH-	
•			N LITERATURE	21
	4.1	•	Amplifiers design techniques	
		4.1.1	Transistor stacking technique	
		4.1.2	Impedance matching between cascode nodes	
	4.2		Combining Techniques	
		4.2.1	Direct Combiner	
		4.2.2	Wilkinson Combiner	
		4.2.3	Transformer-based Combiner	
	4.3	Literat	ture review	31
		4.3.1	A Ka-Band Stacked Power Amplifier with 24.8-dBm Output	
			Power and 24.3% PAE in 65-nm CMOS Technology[17]	31
		4.3.2	A K-Band Power Amplifier with 26-dBm Output Power and	
			34% PAE with Novel Inductance-based Neutralization in 90-nm	
			CMOS[18]	33
		4.3.3	A 21 to 31 GHz Multi-Stage Stacked SOI Power Amplifier with	
			33% PAE and 18 dBm Output Power[19]	33
		4.3.4	A 19-43 GHz Linear Power Amplifier in 28nm Bulk CMOS for	
			5G Phased Array[20]	35
		4.3.5	A 22-37 GHz Broadband Compact Linear Mm-Wave Power Am-	
			plifier Supporting 64-/256-/512-QAM Modulations for 5G Com-	
			munications[21]	36

5	THI	E PROPOSED 2-WAY CURRENT COMBINED POWER AMPLIFIER	42
	5.1	Design of a 2-Way current combining PA	43
		5.1.1 PA stage	44
		5.1.2 Driver stage	47
	5.2	Measurement and Simulation Results	49
6	COI	NCLUSION AND FUTURE WORK	54
	6.1	Conclusion	55
	6.2	Future Work	55
Re	eferen	nces	57

List of Tables

2.1	Estimated Requirements for 28/39 GHz 5G application[6]	11
3.1	Comparison between different classes of PAs [10]	15
5.1	Comparison with state of the art work	53

List of Figures

1.1	Mobile communication technology evolution over the years[1]	1
1.2	5G applications [3]	3
2.1	5G available spectrum above 6-GHz[3]	5
2.2	Beamforming concept	6
2.3	Analog Beamforming.[3]	7
2.4	Digital Beamforming.[3]	9
2.5	Hybrid digital-analog Beamforming.[3]	10
3.1	Class-A PA and signal waveforms	16
3.2	Class-B PA and signal waveforms	17
3.3	Class-AB PA and signal waveforms	17
3.4	Class-C PA and signal waveforms	18
3.5	Class-D PA	19
3.6	Class-E PA	19
3.7	Class-F PA	20
4.1	Cascode configuration with two NMOS transistors	21
4.2	An N-stacked amplifier with cascode caps	22
4.3	The effect of cascode cap on the cascode transistor input impedance	22
4.4	Two-stack amplifier with different matching between cascode node (a)	
	series inductor. (b) shunt inductor. (c) parallel cap between cascode device.	24
4.5	Model of an N amplifier combined	25
4.6	Model of a large amplifier	25
4.7	Direct combining under even excitation	26
4.8	Direct combining under even excitation	27
4.9	N-way Wilkinson power combiner	28
4.10	Transformer based power combining (a) current combining. (b) voltage	
	combining	29
4.11	Layout structure for a two-way (a) current combiner., (b) voltage combiner	
	in[15]	30

4.12	in[15]	30
1 12		31
	Simplified model for a (a) current combiner., (b) voltage combiner in [15].	
	Circuit topology used in [17]	32
	chip micrograph in [17]	32
4.16	Measured and simulated (a) S-parameters (b) Large signal performance	22
		33
	Circuit topology used in [18]	34
		35
4.19	Measured and simulated (a) S-parameters (b) Large signal performance	
	results in[18]	35
4.20	Circuit topology used in [19]	36
4.21	chip micrograph in [19]	37
4.22	Measured and simulated (a) S-parameters (b) Large signal performance	
	results in[19]	37
4.23	Circuit topology used in [20]	38
4.24	chip micrograph in [20]	39
4.25	Measured and simulated (a) S-parameters (b) Large signal performance	
	results in[20]	39
4.26	Circuit topology used in [21]	40
4.27	chip micrograph in [21]	40
4.28	Measured and simulated (a) S-parameters (b) Large signal performance	
	results in[21]	41
5.1	A simplified schematic of the proposed 2-way current combining power	
	amplifier	44
5.2	Load pull simulation (Power contours in red and gain contours in blue)	45
5.3	Implemented load for the last stage	46
5.4	Simulated Balun insertion loss	47
5.5	Combiner model under (a) two different inputs (b) two similar input signals.	47
5.6	Simulated Combiner loss	48
5.7	Simulated (a) Amplitude imbalance for the splitter (b) Phase imbalance	
	for the splitter.	48

5.8	Measured and simulated s-parameters	49
5.9	Measured large signal gain and efficiency at 39GHz	50
5.10	Measured AM-AM curves across frequency	50
5.11	Measured AM-PM curves across frequency	51
5.12	chip microphotograph of the fabricated two-stage two-way current com-	
	bining Power Amplifier	52

List of Symbols and Abbreviations

Abbreviation Description 5G 5th Generation FM Frequency Modulated Frequency Division Multiple Access **FDMA CDMA** Code Division Multiple Access Radio Frequency RF TXTransmitter Receiver Rx PA Power Amplifier LNA Low Noise Amplifier VGA Variable Gain Amplifier Vector Modulator VM TL**Transmission Line** PS **Phase Shifter** IL **Insertion Loss** RL Return Loss