

بسم الله الرهكن الرّحيم

$\infty \infty \infty$

تم رفع هذه الرسالة بواسطة /صفاء محمود عبد الشافي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لايوجد

Evaluation of Vitamin (A) Deficiency among Critically III Children with Sepsis

Thesis

Submitted for Partial Fulfillment of the Master Degree in **Pediatrics**

By

Ebthal Elsayed Gad

M.B., B.Ch. (2015) Faculty of Medicine-Ain Shams University

Under Supervision of

Prof. Dr Hanan Mohamed Ibrahim

Professor of Pediatrics
Faculty of Medicine, Ain Shams University

Prof. Dr. Manal Mohamed Abd El Aziz

Professor of Clinical Pathology Faculty of Medicine, Ain Shams University

Dr. Sondos Mohamed Magdy

Lecturer of Pediatrics
Faculty of Medicine, Ain Shams University

Dr. Haya Essam Ibrahim

Lecturer of Pediatrics
Faculty of Medicine, Ain Shams University

Faculty of Medicine - Ain Shams University
2022

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **AUAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Hanan**Mohamed Ibrahim Professor of Pediatrics, Faculty of Medicine, Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Manal**Mohamed Abd El Aziz Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Sondos**Mohamed Magdy Lecturer of Pediatrics, Faculty of
Medicine, Ain Shams University, for her great help,
active participation and guidance.

I wish to introduce my deep respect and thanks to **Dr. Haya Essam Ibrahim** Lecturer of Pediatrics, Faculty of Medicine, Ain Shams University, for her kindness, supervision and cooperation in this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Ebthal Elsayed Gad

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
Tist of Abbreviations	v
Introduction	1
Aim of the Work	5
Review of Literature	
Pediatric Sepsis	6
Vitamin A	35
Patients and Methods	54
Results	61
Discussion	84
Summary	96
Conclusion	99
Recommendations	
References	101
Arabic Sumamry	

List of Tables

Table No	o. Title	Page No.
Table (1):	Pediatric Sequential Organ Failure (PSOFA) score	
Table (2):	Quick Sequential Organ Failure (QSOFA) score	
Table (3):	Age-adjusted Range of Normal Vital Sign	ns21
Table (4):	Leukocyte counts according to age	22
Table (5):	Surviving Sepsis Campaign international	guidelines 30
Table (6):	Dietary sources of vitamin A and retiequivalences	•
Table (7):	Current Recommended Dietary Allowa values for vitamin A	
Table (8):	The therapeutic effect of Vitamin A infantile infectious diseases	
Table (9):	Descriptive data for demographent anthropometric measures of the studied p	
Table (10):	Comparison between control and pat among demographic data of the studied st	U 1
Table (11):	Comparison between control and pat among anthropometric measures of subjects	the studied
Table (12):	Comparison between control and pat among feeding pattern and food questionnaire of the studied subjects	frequency

List of Tables (cont...)

Table No	o. Title	Page	No.
Table (13):	Comparison between control and patients among vitamin A level of the studied subjects		69
Table (14):	Descriptive data for CBC, Liver function and function of the studied patients	•	70
Table (15):	Descriptive data for serum electrolytes, venou gases, lipid profile and serum lactate measures studied patients	s of the	71
Table (16):	Descriptive data for systolic blood pressure, d blood pressure, prism score 3, prism score ventilation, diagnosis, blood culture, length and outcome of the studied patients	4 (%), of stay,	72
Table (17):	Descriptive data for vitamin A, feeding toleral food frequency questionnaire of the studied pa		73
Table (18):	Relation between vitamin A, sex, blood cultudiagnosis		74
Table (19):	Relation between vitamin A, Septic shock, tolerance, ventilation, outcome and Food frequestionnaire	equency	75
Table (20):	Correlation between Vitamin A and other parameters		79
Table (21):	Univariate and multivariate logistic reganalysis for factors associated with sepsis		83

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Pathogenesis complex of sepsis	
Figure (2):	Inflammatory cascade of sepsis	14
Figure (3):	Inflammatory response in sepsis	15
Figure (4):	The regulation mechanisms of mitochondrial during sepsis.	
Figure (5):	Trigger Tool for Early Septic Shock Recogni	tion23
Figure (6):	Pediatric Advanced Life Support (resuscitation algorithm.	PALS)25
Figure (7):	Surviving sepsis campaign international guid initial resuscitation algorithm	
Figure (8):	Surviving sepsis campaign international guid fluid and vasoactive management algorithm .	
Figure (9):	Vitamin A structure	35
Figure (10):	Dietary uptake and transport of vitamin A	37
Figure (11):	Comparison between control and patients among age (months) of the studied subjects	-
Figure (12):	Comparison between control and patients among sex of the studied subjects	-
Figure (13):	Comparison between control and patients among weight of the studied subjects	
Figure (14):	Comparison between control and patients among z score for weight of the studied subj	
Figure (15):	Comparison between control and patients among z score for height/length of the subjects	studied
Figure (16):	Comparison between control and patients among z score for BMI of the studied subject	· ·

List of Figures (cont...)

Fig. No.	Title	Page No.
Figure (17):	Comparison between control and patier among BMI and MAC of the studied subje	0 1
Figure (18):	Comparison between control and patier among z score for MAC of the studied sub	0 1
Figure (19):	Comparison between control and patier among the food frequency questionnair studied subjects.	re of the
Figure (20):	Comparison between control and patier among vitamin A level of the studied subje	
Figure (21):	Relation between vitamin A and septic sho	ck 76
Figure (22):	Relation between vitamin A and feeding to	lerance 77
Figure (23):	Relation between vitamin A and ventilation	n77
Figure (24):	Relation between vitamin A and outcome.	78
Figure (25):	Relation between vitamin A and food a questionnaire.	
Figure (26):	Correlation between vitamin A and BMI z	score 80
Figure (27):	Correlation between vitamin A and MAC.	80
Figure (28):	Correlation between vitamin A and prism s	score 381
Figure (29):	Correlation between vitamin A and prism s	score 481
Figure (30):	ROC curve for vitamin A as a predictor of	sepsis 82

List of Abbreviations

Abb.	Full term
AIDS	Acquired Immune Deficiency Syndrome
	$Adaptor\ protein\ 1$
	$Activated\ protein\ C$
	$Adreno cortico trophic\ hormone$
	All-trans-retinoid acid
<i>AMPs</i>	Antimicrobial peptides
	Acute respiratory distress syndrome
	Area under curve
<i>BMI</i>	Body mass index
<i>BPS</i>	Best practice statements
<i>CAP</i>	Cholinergic anti-inflammatory pathway
<i>CRBP II</i>	Cellular retinol binding protein II
CI	Confidence interval
<i>CRH</i>	Corticotrophin releasing hormone
<i>CRT</i>	Capillary refilling time
DCs	Dendritic cells
<i>DIC</i>	$\dots Disseminated\ intravascular\ coagulation$
DNA	Deoxyribonucleic acid
<i>ED</i>	Emergency department
<i>EGDT</i>	Early goal-directed therapy
ELISA	Enzyme-linked immunosorbent assay
ERK1/2	Extracellular signal-regulated kinase 1/2
FAO	Food and agriculture organization
<i>FFQ</i>	Food frequency questionnaire
FiO2	Inspired oxygen fraction
<i>GRV</i>	Gastric residual volumes
<i>GM-CSF</i>	Granulocyte-macrophage colony-stimulating
	factor
<i>HPA</i>	Hypothalamic-pituitary-adrenal

List of Abbreviations (Cont...)

Abb.	Full term
IRM SPSS	Statistical Package for Social Science
	Intensive care unit
	inhaled nitric oxide
<i>IFN</i>	
	Interferon gamma
•	Interferon regulatory factor 7
<i>IL</i>	, , , , , , , , , , , , , , , , , , , ,
<i>IL-6</i>	
	INTERNATIONAL normalized ratio
	Inter-quartile range
<i>IO</i>	•
IOM	Institute of Medicine
	Interleukin-1 receptor-associated kinase-M
	Interferon regulatory factor 3
<i>IV</i>	Intravenous
<i>IVIG</i>	Intravenous immunoglobulin
<i>JAMA</i>	Journal of American Medical Association
JNK	C-Jun N-terminal kinase
<i>LPS</i>	Lipopolysaccharide
<i>MAC</i>	Mid arm circumference
<i>MAP</i>	Mean arterial pressure
NFHS-3	National Family Health Survey-3
NF kB	Nuclear factor kappa B
NF-KB	Nuclear factor-₭B
<i>NK</i>	Natural killer
<i>NO</i>	Nitric oxide
NPC2	Niemann–Pick C2 protein
<i>NPV</i>	Negative predictive value

List of Abbreviations (Cont...)

Abb.	Full term
OR	Odds ratio
	Pediatric advanced life support
	Pathogen associated molecular patterns
	Arterial oxygen partial pressure
	Positive end-expiratory pressure
	Pediatric intensive care units
PO2	Partial pressure of oxygen
	Positive predictive value
	pattern recognition receptors
<i>pSOFA</i>	Pediatric SOFA
qSOFA	Quick SOFA
<i>RA</i>	$Retinoic\ acid$
<i>RAE</i>	Retinol activity equivalent
<i>RAR</i>	Retinoic acid receptor
<i>RBP</i>	Retinol-binding protein
<i>RDA</i>	Recommended Dietary Allowance
<i>RE</i>	Retinol equivalent
<i>RNS</i>	Reactive nitrogen species
<i>ROC</i>	Receiver operating characteristic curve
<i>ROS</i>	Reactive oxygen species
<i>RXR</i>	$Retinoid\ X\ receptor$
SSC	Surviving sepsis campaign
ScvO2	Central venous oxygenation saturation
SIGIRR	Single Ig IL-1R-related molecule.
<i>SIRS</i>	Systemic inflammatory response syndrome
SOCS1	Suppressor of cytokine signaling 1
SOFA	Sequential Organ Failure Assessment
ST2	Stimulation expressed gene 2

List of Abbreviations (Cont...)

Abb.	Full term
TAMOF	Thrombocytopenia associated multiple organ
	failure
<i>Th17</i>	T helper 17
<i>TIR</i>	Toll Interleukin-1 Receptors
<i>TLRs</i>	Toll-like receptors
<i>TNF</i>	Tumor necrosis factor
TNF-α	Tumor necrosis factor-α
TOLLIP	Toll interacting protein
<i>VA</i>	Vitamin A
<i>VAD</i>	Vitamin A deficiency
<i>VAS</i>	Vitamin A supplementation
VADDs	Vitamin A deficiency disorders
	WORLD Health Organization

Evaluation of Vitamin (A) Deficiency among Critically Ill Children with Sepsis

Hanan M Ibrahim, Manal M Abd El Aziz, Sondos M Magdy, Haya E Ibrahim, Ebthal E Gad

> Department of Pediatrics Faculty of Medicine-Ain Shams University

Corresponding author: Ebthal Elsayed Gad Mobile: 01000739435 Email: ebthalgad840@gmail.com

Abstract

Background: Vitamin A is an immunomodulatory, and its deficiency may cause impaired immune function, which are found in sepsis. There is a biological rationale that vitamin A deficiency (VAD) may be a contributing factor related to poor clinical outcomes in patients with sepsis.

Aim of the Work: to assess the prevalence of vitamin A deficiency in critically ill children with sepsis and its association with clinical outcomes.

Patients and Methods: This cross-sectional study included 40 critically ill children with sepsis who were admitted to the paediatric intensive care unit. The control group consisted of 40 age- and sex-matched approximate-health children from outpatient clinic. For the measurement of serum vitamin A status, blood samples were taken from all patients within the first 24 hours of admission. The vitamin A status of the sepsis and control groups were compared. Univariate and multivariate approaches were used to assess the link between vitamin A deficiency and sepsis.

Results: The study enrolled 40 children with sepsis and 40 matched healthy children so there was no statistically significant difference between controls and patients among age and sex, with median age 4 (2 – 12) months for both groups with male predominance (60.0%). Regarding body measures there was a high statistically significant lower values among patients group than controls group for z score of weight, height/length, body mass index (BMI) and mid arm circumference (MAC) of the studied subjects, that indicated increased malnutrition prevalence among septic children than control group. In the present study, by comparing VAD between patients and controls, there was high statistically significant difference as all septic patients (100%) had VAD and the VAD among healthy control was found in 30% of them. We also found that patients with septic shock, patients who were nothing per os (NPO), patients on ventilators and died patients were more deficient in vitamin A level than other patients compared with them (high statistically significant difference), illustrated that VAD may be had a role in sepsis related morbidity and mortality. There was a positive correlation between vitamin A and BMI z score and MAC while there was a negative correlation with prism 3 and prism 4.ROC curve for assessment of vitamin A as a predictor of sepsis, found that at cut off value $\leq 9~\mu g/dl$, the Sensitivity, Specificity, positive predictive value (PPV) and negative predictive value (NPV) were 100% for each.

Conclusion: low level of vitamin A, lower than or equal to $9 \mu g/dl$ was associated with sepsis, septic shock, and higher PRISM score. Vitamin A deficiency may be a marker of morbidity and mortality in critically ill children with sepsis.

Key words: Sepsis, Vitamin A, vitamin A deficiency.

Introduction

Sepsis is a condition in which the immune system over-reacts to infection, releasing inflammatory mediators into the peripheral blood and triggering widespread inflammation. It is considered as a worldwide health problem, resulting in millions of deaths each year. The mortality of severe sepsis was reported to be as high as 34.6% in children (*Wang et al., 2014*). It has been revealed that over 50% of deaths in preschool children were due to severe infectious diseases that could result in sepsis (*Liu et al., 2012*).

Sepsis and septic shock are among the most important medical emergencies throughout the world. Advancement in the life support technologies have proven to be insufficient in reducing the mortality and morbidity arising from severe sepsis. In the era of multi-drug resistance, it becomes imperative that such cases should be diagnosed at the earliest and appropriate treatment and management measures should be initiated for better patient outcome/care (*Ramana et al.*, 2014).

Sepsis is, worldwide, one of the leading causes of death among infants and children (*Hermon et al.*, 2020). A steady increase in the incidence of severe sepsis has been reported in the past decades (*Hartman et al.*, 2013). As a public health problem, sepsis has posed a significant burden on extensive health care resources for many years. It is reported as a complicated immune disorder characterized by both a hyper