

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سامية زكى يوسف

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING CAIRO – EGYPT

FPGA IP Cores Encryption Systems Based On Nonlinear Algorithms

A Thesis

Submitted in partial fulfillment for the requirements of the degree of Master of Science in Electrical Engineering Electronics and Communications Engineering Department Ain Shams University

Submitted by

Eng. Haitham Abdel-Hady Mohamed

Electronics and Communications Department Faculty of Engineering, Ain Shams University

Supervised By

Prof. Dr. Wagdy Refaat Anis

Electronics and Communication Department
Faculty of Engineering – Ain-Shams University (ASU), Cairo, Egypt

Prof. Dr. Ahmed H. Madian

Nano Electronics Integrated Systems Center (NISC) Nile University, Cairo, Egypt

Prof. Dr. Ahmed Abdel-Hafez

National Telecommunications Regulatory Authority, Cairo, Egypt

Cairo - 2022

AIN SHAMS UNIVERSITY FACULT AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING CAIRO – EGYPT

Examiners Committee

Name: Haitham Abdel-Hady Mohamed

Thesis: FPGA IP Cores Encryption Systems Based on Nonlinear

Algorithms

Degree: Master of Science in Electrical Engineering

Name, Title, and Affiliate	Signature
1. Prof. Dr. Mohamed Hassan Abdel_Azeem Electronics and Communication Eng. Department Faculty of Engineering Arab Academy for Science Technology and Maritime Transport, Cairo, Egypt	
2. Prof. Dr. Ismail Mohamed Hafez Electronics and Communication Eng. Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt	
3. Prof. Dr. Wagdy Refaat Anis Electronics and Communication Eng. Department, Faculty of Engineering Ain Shams University, , Cairo, Egypt.	

Date: / / 2022

STATEMENT

This Thesis is submitted to Ain Shams University in partial fulfillment of the degree of Master of Science in Electrical Engineering.

The work included in this thesis was carried by the author in the Department of Electronics and Communications Engineering, Ain Shams University.

No part of this Thesis has been submitted for a degree or a qualification at any other university or institute.

Name : Haitham Abdel-hady Mohamed

Signature:

Date : / / 2022

Publications

[1] H.A. Mohamed, A.H. Madian, W. R. Anis and A. A. Abdel Hafez, "Generation of the chaotic keys on the fly for AES encryption system", 2021 3rd Novel Intelligent and Leading Emerging Sciences Conference (NILES), pp. 1-5, Cairo, Nov 2021.

DOI: 10.1109/NILES53778.2021.9600560.

Acknowledgment

First and foremost, I would like to express my gratitude to ALLAH, the Ever-Living and the Sustainer of all existence, the One who neither begets nor is born, nor is there any comparable to Him.

I am thrilled to express my heartfelt gratitude and appreciation to my superiors:

Prof. Dr. Wagdy Anis (ASU)

Prof. Dr. Ahmed H. Madian (NU)

Prof. Dr. Ahmed Abdel-Hafez (NTRA)

Throughout my research, I am grateful for their supervision, direction, generous suggestions, criticism, and constant support.

My heartfelt gratitude goes to Prof. Ahmed H. Madian for his advice, opendoor policy, and numerous helpful feedbacks during the dissertation writing process. I believe that your guidance has helped me develop as a researcher.

Finally, I'd like to express my gratitude to my family, to whom I owe so much. To **mother**, **wife**, and **my daughter**, as well as **my brothers**.

I sincerely apologize to **my wife** and **my daughter** for all of the late nights, weekends, and holidays that I have missed. Thank you for your unending encouragement, understanding, and assistance with all of my projects.

Dear Thanks for all

Abstract

The revolution in information and communication technology has become linked to the development of societies in our time, as it is considered the most important means of transferring developing societies to more developed societies. So, The Egyptian government wants to create a digital Egypt and society that uses technology in all aspects of life. As a result, it aims to improve government agencies' digital services as well as the development of information, and communication technology infrastructure. All of this need strong information security to provide privacy and confidentiality of the information in circulation.

Information security is the science that provides data protection from all threats, risks, and security breaches through tools and measures taken for this matter. Encryption holds a special place in information security sciences, it is the backbone to ensure the confidentiality of information because it protects the data from attackers and unauthorized persons. Encryption systems are classified as asymmetric or symmetric based on their key distribution. In asymmetric encryption, the encryption depends on private and public keys. On the other hand, symmetric encryption depends on only symmetric keys for encrypting and decrypting the data.

Researchers have become more interested in generating both private keys, public keys, and symmetric keys. There is a lot of research for the generation of encryption keys.

This thesis provides a study in the realm of symmetric encryption that uses chaotic systems to produce strong and secure subkeys. Generation subkeys for Advanced encryption standard (AES) and Blowfish encryption algorithm.

AES and Blowfish are strong symmetric block cipher encryption algorithms. Both Encryption algorithms use symmetric key for encryption and

Decryption. Using strong symmetric key for encryption algorithm adds strong resistance against different attacks, so it's important issue to design strong symmetric key.

Chaotic systems describe very complicated dynamical system that difficult to predict and control. chaotic systems have some properties like deterministic that means the chaotic systems have a mathematical model that describe the system behavioral. Also chaotic systems are very sensitive to initial conditions (butterfly effect) and any change in initial condition leads to a significant change in the system behavioral and the output [1].

Making a modification to blowfish encryption algorithm is proposed by replacing the standard round function by light weight function to reduce the resources utilization area and increase the speed. Where the standard blowfish consumes large resources from the FPGA platform.

Numerical analysis is applied to the proposed technique, we utilized MATLAB to test our proposed technique through simulation, numerical operations. Statistical Tests (Entropy, Mean Square Error, Correlation Coefficient and NIST test) have been done on the output of the proposed encryption algorithms

Hardware digital realization of all introduced systems is implemented using the Xilinx Virtex_5 Field Programmable Gate Arrays (FPGA) kits. Also, the proposed technique is designed using VHDL and Xilinx ISE 14.7 tool is used in both VHDL simulation and hardware implementation stages.

Key words (CHAOTIC SYSTEMS, LORENZ SYSTEM, FPGA, AES, BLOWFISH).

Table of Contents

Acknowledgement	
Abstract	
List of Figures	
list of Tables	
Abbreviations	
Chapter 1: Introduction	
1.1 Overview.	1
1.2 Problem Statement	1
1.3 Related Work	
1.4 Thesis Contributions	
1.5 Thesis Organization	4
Chapter 2: Networks Security	
2.1 Introduction	5
2.2 Network Security overview	6
2.3 Encryption Algorithms literature survey	6
2.3.1 Asymmetric Encryption Algoritham	7
2.3.2 symmetric Encryption Algoritham	10
2.4 Security Attack	
2.4.1 Passive Attacks	16
2.4.2 Active Attacks	
2.4.3 Attacks on Encryption schemes	
2.5 Security Services	
2.6 Security Mechanisms	
2.7 Summary	22
Chapter 3: Cryptography and Chaos	
3.1 Introduction	23
3.2 Chaos Theory	24
3.2.1 Lyapunov Exponent	
3.2.2 Chaotic Maps	27
3.2.2.1 Logistic map	27
3.2.2.2 Lorenz Attractor	29
3.3 Chaos-based Cryptography	30
3.4 Chaos Application in Cryptography	31
3.4.1 Block Cipher Based on Chaotic Systems	31
3.4.2 Hash Function based on Chaotic Systems	32
3.4.3 Random Number Generators Based on Chaotic Maps	33
3.5 Summery	34
Chapter 4: Proposed Generation of the Chaotic ke	ys on the
fly for AES Encryption System	
4.1 Introduction.	35

4.2. A.1	25
4.2 Advanced Encryption Standard (AES)	
4.2.1 SubBytes Transformation.	
4.2.2 Shift Rows Transformation	
4.2.3 Mix_Columns Transformation	
4.2.4 Add Round Key Transformation	
4.3 Suggested Subkeys Generation Model With Detailed.Discussion	
4.4 Results and Discussion	44
4.4.1 Statistical Tests	44
4.4.2 Defiantness Against Differential Attacks	46
4.4.3 NIST TEST	46
4.4 Summary	48
Chapter 5: Proposed Modified Blowfish Algorithm	Based On
Improved Lorenz Attractor	
5.1 Introduction	49
5.2 Blowfish Encryption Algorithm	49
5.3 Suggested Encryption Algorithm	
5.3.1 Light Weight Function	
5.3.2 Generation Subkeys Using A Chaotic System	
5.4 FPGA Implementation.	
5.5 Results and Discussion.	
5.5.1 Experimental Results	
5.5.2 Defiantness against Differential Attacks	
5.5.3 NIST TEST.	
5.6 Summery	
•	
Chapter 6: Conclusion And Future work	
6.1 Conclusions.	
6.2 Future work	66
References	67

List of Figures:

2.1	Classification of Encryption Methods	7
2.2	Encryption and Decryption Processes Using Asymmetric keys	8
2.3	RSA processing of Multiple Blocks	9
2.4	Encryption And Decryption Processes Using Asymmetric key	10
2.5	General Depiction of DES.	12
2.6	Structure of CCS.	13
2.7	Block diagram for Encryption scheme based on Chaotic system	13
2.8	Encryption method based on Edge Detection and generalized	14
2.9	Common Attacks on Networks	16
2.10	Passive and Active Attacks	18
3.1	Lyapunov Exponent Principle	27
3.2	The Logistic map bifurcation diagram.	28
3.3	A plot of the Lorenz system trajectory	29
4.1	Advanced Encryption Standard (AES) Process	36
4.2	Shift Rows cyclically shifts the last three rows in the state	37
4.3	Mix Columns operates on the State column	38
4.4	Add Round Key xor state with subkey	39
4.5	Euler's method hardware realization.	40
4.6	Block Diagram Of The Improved Lorenz System	41
4.7	ISE Simulation For Generation AES subkeys using improved lorenz	42
4.8	Block Diagram of the Suggested Encryption System	43
5.1	Blowfish Feistel Structure	50
5.2	Blowfish Round Function Structure	50
5.3	Suggested Encryption System Block Diagram	51
5.4	Round Process Block Diagram.	52
5.5	Light weight function block diagram.	54
5.6	Block Diagram of The Improved Lorenz System	55
5.7	ISE Simulation of Improved Lorenz For Generation Blowfish Subkeys	56
5.8	Block Diagram of The Suggested Encryption System	57
5.9	FPGA prototyping. (a) The FPGA kit, (b) the Decryption operation, (b) the Encryption operation.	58
5.10	Original Tests images with corresponding Encrypted Picture by Suggested Algorithm	59

5.11	Histogram results of Original Images with Corresponding Encrypted Images by Suggested Algorithm	59
5.12	Correlation Coefficient results of Original images with corresponding Encrypted Images by The Suggested algorithms	61

List of Tables

2.1	security services and the corresponding mechanism	22
3.1	Comparison between cryptography algorithms and chaotic systems	30
4.1	S-box: substitution values for the byte	37
4.2	FPGA synthesis result of the improved Lorenz chaotic systems	42
4.3	Improved Lorenz Chaotic System Subkeys Generation	43
4.4	VIRTEX 5 FPGA Kit hardware resources Utilization Comparison summary	44
4.5	Entropy, Correlation Coefficients and Mean Square Error of the Suggested Encryption System	45
4.6	The Suggested Encryption System Values of NSCR and UACI	46
4.7	NIST Comparison Results Between Suggested Encryption System and Original AES	47
5.1	VIRTEX 5 FPGA Kit Hardware Resources Utilization Comparison Summary	53
5.2	Entropy, Correlation Coefficients, and Mean Square Error comparison of The Suggested Encryption System and Existing Encryption Schemes	61
5.3	Suggested Encryption System Comparison of The Suggested Encryption System And Existing Encryption Scheme Values of NSCR and UACI	62
5.4	NIST Comparison Results Between Suggested Encryption System And Original Blowfish	63
5.5	Explain the Example of Testing the suggested Modified Blowfish Algorithm Results Comparing with Original blowfish	63

Abbreviations

AES Advanced Encryption Standard

PRNG pseudorandom number generators

MHz Mega Hertz

FPGA Field programmable gate array

LUT Look Up Tables

Ke Encryption Key

Kd Decryption Key

1_D One Dimension

H_D High Dimension

IDEA International Data Encryption Algorithm

DSA Digital Signature Algorithm

RSA Ron Rivest, Adi Shamir, and Leonard Adleman

DoS Denial of Service

Ku Public key

Kr Private key

ECBC Enhanced Cipher Block Chaining

CBC Cipher Block Chaining

NSA National security agency

NIST National Institute of Standards and Technology

UACI Unified Averaged Changed Intensity

NCPR Number of Changing Pixel Rate

MSE Mean Square Error

Chapter (1)

Introduction

1.1 Overview

Information and Communication Technology has become an essential aspect of our daily lives. We use it to interact with others, share data, shop, do paperwork, and even make restaurant reservations. It's tough to envision modern life without them and their global connectedness. Despite its benefits, computer network interconnection poses major risks.

Because the Information Revolution is evolving at such a rapid pace, all users of this technology must be mindful of the hazards associated with implementing cutting-edge technology. Complete ability to secure and preserve information from theft and malicious use of it so that the information revolution does not harm those who benefit from it.

Security demands for special information communications networks such as Military Networks or Company Networks require a proprietary and unique encryption method to provide a high level of secrecy. When interacting with peers demands safe communications, encryption methods are responsible for guaranteeing end-to-end secrecy for the payload data packets.

This dissertation reviews the most valuable encryption algorithms additionally investigates the security concerns and provides remedies for securing communication networks.

Furthermore; This study is being conducted to improve network performance as well as security services on networks.

1.2 Problem Statement

Due to the fact that encryption operations performed by any protocols increase the number of operations, and slows down the data rate, hence Encryption may have a negative effect on the quality of services (QOS) offered