

بسم الله الرهكن الرجيم

$\infty \infty \infty$

تم رفع هذه الرسالة بواسطة /صفاء محمود عبد الشافي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لايوجد

Ain Shams University Faculty of Science Microbiology Department

Interaction between *Escherichia coli* P fimbrae Gene and Host Innate Immune Response in Urinary Tract Infection of Children

Thesis

Submitted for Ph.D degree in Microbiology

 $\mathcal{B}y$

Thanaa Saleh Mohammed Zaki

B. Sc. Microbiology/ Chemistry 1997 Master Degree of Science in Microbiology 2008

Under Supervision of Prof. Dr. Hala Mohammed Abu Shady

Professor of Bacteriology Microbiology Department Faculty of Science - Ain Shams University

Dr. Maha Moustafa Kamal

Assistant Professor of Biochemistry Biochemistry Department Faculty of Science Ain Shams University

Dr. Omayma Mohammed Hassanin

Consultant of Clinical Pathology & Oncology Medical Ain Shams Research Institute (MASRI) Ain Shams Hospitals

Approval sheet

Interaction between *Escherichia coli P-fimbrae* Gene and Host Innate Immune Response in Urinary Tract Infection

By Thanaa Saleh Mohammed Zaki

Supervisors Approved

Prof. Dr. Hala Mohammed Abu Shady

Professor of Microbiology Microbiology Department-Faculty of Science Ain Shams University

Dr. Maha Moustafa Kamal

Assistant Professor of Biochemistry Biochemistry Department Faculty of Science-Ain Shams University

Dr. Omayma Mohammed Hassanin

Consultant of Clinical Pathology & Oncology Medical Ain shams Research Institute (MASRI) Ain Shams Hospitals

Prof. Dr. Mohamed Osman Abdel-Monem

Professor of Microbiology and Head of Botany and Microbiology Department Faculty of Science-Benha University

Prof. Dr. Abdallah Mohamed Amin Merwad

Professor of Zoonoses& General programmes coordinator Faculty of Veterinary Medicine-Zagazig University

Examination Date: / /		Approval Date:	/	/
University Council Approval:	/	/		

I would like to express my gratitude to my supervisors, **Prof. Dr. Hala Mohammed Abu Shady,** Professor of Microbiology, Microbiology Department, Faculty of Science - Ain Shams University, **Dr. Maha Mohammed Kamal,** Assistant Professor of Biochemistry, Biochemistry Department, Faculty of Science Ain Shams University, **Dr. Omayma Mohammed Hassanin,** Consultant of Clinical Pathology & Oncology, Medical Ain Shams Research Institute (MASRI), Ain Shams Hospitals. You were so wonderful to me; you made me believe that I had so much strength and courage to persevere even when I felt lost. You were very tolerant and determined to see me through. You were such wonderful motivators even when the coping seemed tough for me. I aspire to emulate you.

Finally, I extend warm thanks to all my colleagues and friends who assisted, encouraged and supported me during this research.

Last but not least, I can't forget to thank all members of my **Family**, for pushing me forward in every step on my life.

Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iv
List of Figures	vi
Abstract	vii
Introduction	1
Aim of the Work	4
Review of Literature	5
Material and Methods	41
Results	60
Discussion	73
Summary	83
Conclusion and Recommendations	s 86
References	88
Arabic Summary	

List of Abbreviations

Abbr. Full-term

AAP : American Academy of Pediatric0073

ABU : Asymptomatic bacteriuria

APN : Acute pyelonephritis

AFA : Afimbrial adhesion

Bp : Base pair

CAUTIS : Catheter-associated urinary tract infections

cDNA : Complementary DNA

CFU : Colony forming unit

CNF1 : cytotoxic necrotizing factor 1

CPS : Canadian Paediatric Society

CRP : C- reactive protein

CT : Threshold Cycle

DMSA: Technetium- 99m-dimercaptosuccinic acid

DNA : Deoxyribonucleic acid

EAU : European Association of Urology

ESPU: European Society for Paediatric Urology

ESR : Erythrocyte sedimentation rate

GAPDH : Glyceraldehyde 3-phosphate dehydrogenase

HBSS: Hanks Balanced Salt Solution

HIV : Human immune-defficiency virus

HLYA: Hemolysin A

HPMNLs: Human polymorphonuclear leukocytes

IBCs: Intracellular bacterial communities

IL-6 : Interleukin-6

IL-8: Interleukin-8

LPS: Lipopolysaccharide

MFI : Mean fluorescence intensity

MR : Methyl red

PAIs : Pathogenicity-associated islands

PAMPs: Pathogen-associated molecular patterns

PAP : Pyelonephritis associated pili

PBMCs: peripheral blood mononuclear cells

PBS : Phosphate buffered saline

PCR : Polymerase Chain Reaction

PMNs : Polymorphonuclear neutrophils

PRRs : Pattern recognition receptors

QPCR : Quantitative Polymerase Chain Reaction

RAPN: Recurrent acute pyelonphritis

RBCs : Red blood cells

RCS : Renal cortical scintigraphy

RNA: Ribonucleic Acid

RPM (**rpm**): Revolutions per minute

RT-PCR: Reverse transcription Polymerase Chain Reaction

RUTI : Recurrent urinary tract infection

SD : Standard deviation

SFA : Sialic acid-fimbrial adhesin

SIM : Sulphide-indole-mobility

SPA : Suprapubic aspiration

TAE : Tris acetate EDTA buffer

TLR4 : Toll-like receptor 4

UPEC : Uropathogenic *E. coli*

UV : Ultraviolet radiation

VFs : Virulence factors

VUR : Vesicoureteric reflux

WBCs: White blood cell

List of Tables

Table No.	Title	Page No.
Table (1):	Primers of pap gene	48
Table (2):	Primers	56
Table (3):	Comparison between patient control groups regarding demogradata.	phic
Table (4):	No of recurrence distribution of AP the patients' group	
Table (5):	Causative organism distribution in patient and control groups	
Table (6):	Pus cells and red blood distribution in the patient and control groups.	the
Table (7):	Total WBC count in the patient control groups	
Table (8):	CRP level and bacteriuria frequ distribution in the patient and co groups.	ntrol
Table (9):	Distribution of renal scars and VU the patient and control groups	R in
Table (10):	CXCR1 gene expression in patient control groups	
Table (11):	Comparison between positive <i>pap</i> negative <i>pap</i> patients regarding parameters.	all70

Table (12): Comparison between positive pap and negative pap patients regarding 2^- Δ CT(CXCR1) (x10^-4)	71
Table (13): Correlation between $2^{-\Delta}CT(CXCR1)$ (x10^-4) with Age (years), No of	/1
recurrences, Total WBC count (mL), Duration of fever (days) and Admitted	
(days)	72

List of Figures

Figure No	. Title	Page No.
Figure (1):	Urogenital system: upper versus le tract UTI	
Figure (2):	Schematic figure outlining bact challenge and activation of the response in urinary tract infections.	host
Figure (3):	TLR4 signalling, bacterial virul and UTI severity	
Figure (4):	Bar chart between patients and co according to gender.	
Figure (5):	Bar chart between patients and co according to age (years)	
Figure (6):	Histogram for the recurred distribution of the patients group	
Figure (7):	Bar chart showing CRP level bacteriuria distribution in the pat group.	ients
Figure (8):	Comparison between APN and Apatients regarding2^-ΔCT (CXCR1	
Figure (9):	Comparison between APN and Apatients regarding $2^-\Delta CT(CXC)$ (x10^-4).	CR1)
Figure (10):	Comparison between APN and Apatients regarding CXCR1 expression	gene

Abstract Thanaa Saleh Mohammed Zaki

Interaction between Escherichia coli p fimbrae gene and host innate immune response in urinary tract infection

Context:

Uropathogenic $E\ coli$ is the pathogen mostly associated with urinary tract infections. Disease severity determined by the balance between the pathogen and the innate immunity of the host, producing either acute pyelonephritis or asymptomatic bacteriuria.

Aim:

To investigate the impact of *Escherichia coli p-fimbriae* gene and the host chemokine receptor *CXCR*1 on disease severity in APN and ABU patients and to assess the impact of *CXCR*1 gene expression on recurrence risk of APN.

Settings and design

50 children with APN (mean age 5.98±2.54 years) and 50 children with ABU; as controls (mean age 6.98±2.98 years).

Methods:

Detection of *E. coli pap* gene in *E.coli* isolates using conventional PCR, and quantification of CXCR1 gene expression using RT PCR.

Statistical analyses:

Independent-samples t-test, Chi-square (x²) test and Pearson's correlation coefficient (r) test.

Results:

pap gene was detected in 80% of the studied APN patients compared to only 16% of the ABU patients (p<0.05). comparing positive and negative pap APN patients regarding gender, number of recurrences, pus cells, RBCs, total leucocytes, CRP, bacteriuria, duration of fever, admission days and disease related renal scars, did not reveal any significant differences. CXCR1 gene expression was significantly (p<0.001) lower in APN patients (0.464±0.226) compared to their age matched ABU controls, (1.000±0.428). There were no significant correlations between 2^-ΔCT (CXCR1) and neither age, admission days or duration of fever.

Conclusion

Low CXCR1 gene expression may be a predisposing factor to APN as well as to increased risk of recurrence.

Introduction

Urinary tract infections (UTIs) are among the most common bacterial infections in humans (Bischoff et al., 2018) and a common cause of morbidity and mortality which impairs the quality of life for large numbers of individual (Ambite et al., 2021). Among the bacterial species involved in UTIs, uropathogenic *Escherichia coli* strains (UPEC) are the most common, accounting for about 80% of uncomplicated UTIs, 95% of community-acquired infections, and 50% of hospital-acquired infections (Tabasi et al., 2016). UPEC also remains the most frequent pathogen in complicated UTIs (Bartoletti et al., 2016).

Disease severity is determined by the balance between the pathogen and the host (**Ragnarsdottir** *et al.*, **2008**). After invasion of the sterile urinary tract, *Escherichia coli* may either establish a state of commensalism or cause severe, symptomatic disease. The virulent strains break the inertia of the mucosal barrier and may cause acute pyelonephritis, characterized by a rapid innate host response with cytokine secretion, and rapid recruitment of immune cells to the infection site, which may lead to successful elimination of bacteria or to disease and tissue damage (**Svanborg** *et al.*, **2001**). On the other hand, asymptomatic bacteriuria (ABU) occurs, in at least 1% of the population and *E. coli* (> 10⁵ cfu mL-1) may persist for months or even years without evoking a destructive mucosal host response.

Studies of innate immunity have identified genetic defects that increase the susceptibility to both symptomatic and asymptomatic UTI in patients (Ragnarsdottir et al., 2008). The innate immune response is initiated by activating Toll-like receptors (TLRs) (Olson and Hunstad, 2016). TLRs determine the efficiency of pathogen recognition while chemokine receptors, like CXCR1, are critical for bacterial clearance (Ragnarsdottir et al., 2008). CXCR1, the receptor for IL-8, is essential for the migration and activation of neutrophils) (Olson and Hunstad, 2016).

The UTI severity also reflects the properties of virulence factors of the infecting UPEC strain. The ABU strains, in contrast, often fail to express those virulence factors, and hence, it has been suggested that many ABU strains are attenuated UPEC strains (Ragnarsdottir et al., 2008). UPEC strains possess a number of virulence factors that contribute to their ability to overcome different defense mechanisms and help to cause disease. These virulence factors that are located in virulence genes include fimbriae (which help bacterial adherence and invasion), iron-acquisition systems (that allow bacterial survival in the iron-limited environment of the urinary tract), flagella and toxins (which promote bacterial spread). The most important of them is the fimbrae, encoded by the *pap* gene, also known as pyelonephritis-associated pili (Dadi et al., 2020).