

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سامية زكى يوسف

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

Ain Shams University Faculty of Women For Arts, Science & Education **Botany Department**

Effect of Active Plant Agents, Nanoparticles and Radiation on **Dental Cariogenic Bacteria**

A Thesis

Submitted in Partial Fulfillment of the Requirements for the Degree of M.Sc. Microbiology

By

Abdelrazq Ibrahim Hussein Mohamed Sallam

(B.Sc. Botany and Chemistry, 2009)

Supervised By

Prof. Mehreshan Taha El-Mokadem

Professor of Microbiology, Botany Department at Women Faculty for Arts, Science and Education, Ain Shams University

Prof. Hoda Hassan Abo-Ghalia

Professor of Microbiology, Botany Department at Women Faculty for Arts, Science and Education, Ain Shams University

Assoc. Prof. Amany Badr El-Deen Abd-El-Aziz

Associate Professor of Microbiology, Microbiology Department at National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA)

Ain Shams University
Faculty of Women
For Arts, Science & Education
Botany Department

Approval Sheet

Title: Effect of Active Plant Agents, Nanoparticles and

Radiation on Dental Cariogenic Bacteria

Name: Abdelrazq Ibrahim Hussein Mohamed Sallam

M.Sc. Microbiology

Date: 16 /07 /2022

Advisory Committee

Prof. Mehreshan Taha El-Mokadem

Professor of Microbiology, Botany Department at Woman Faculty for Arts, Science and Education, Ain Shams University

Prof. Hoda Hassan Abo-Ghalia

Professor of Microbiology, Botany Department at Woman Faculty for Arts, Science and Education, Ain Shams University

Prof. Hala Mahmoud El-Hefnawi

Professor of Microbiology, Pharmaceutical Research Department at National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority

Prof. Hesham Mohamed Abdallah

Professor of Microbiology, Botany Department at Faculty of Science, Suez Canal University

Ain Shams University
Faculty of Women
For Arts, Science & Education
Botany Department

Title: Effect of Active Plant Agents, Nanoparticles and

Radiation on Dental Cariogenic Bacteria

Name: Abdelrazq Ibrahim Hussein Mohamed Sallam

M.Sc. Microbiology

Date:16 / 07/ 2022

Supervisors Committee

Prof. Mehreshan Taha El-Mokadem

Professor of Microbiology, Botany Department at Woman Faculty for Arts, Science and Education, Ain Shams University

Prof. Hoda Hassan Abo-Ghalia

Professor of Microbiology, Botany Department at Woman Faculty for Arts, Science and Education, Ain Shams University

Assoc. Prof. Amany Badr El-Deen Abd-El-Aziz

Associate Professor of Microbiology, Microbiology Department at National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA)

Declaration

Thesis has not been previously, submitted for any degree at this or at any other university.

Signature
Abdelrazq Ibrahim Hussein Sallam

Acknowledgments

Firstly, my best praise and endless thanks to ALLAH, who provided me with his grace in my all life.

I would like to express my grateful and hearty thanks to my dear, example and principal supervisor, Prof, Mehreshan Taha El Mokadem, Professor of Microbiology, Department of Botany, Faculty of woman for Arts, Science and Education, Ain Shams University, for her support, valuable advice, keen guidance, comments, encouragement which made the completion of this thesis possible, useful suggestions, and patiently answering many questions and constructive criticism through the whole stages of this thesis, personally I learnt from her experiences and her highly professional attitude, patient and organization.

It is a great pleasure for me to express my grateful thanks to my supervisor, Prof, Hoda Hassan Abo-Ghalia, Professor of Microbiology, Department of Botany, Faculty of woman for Arts, Science and Education, Ain Shams University, for her scientific assistances during gathering information about the work and for her critical reading of the manuscript, excellent advice, enthusiastic guidance, patiently answering my questions and encouragement towards the successful completion of this study.

It is a great pleasure for me to express my grateful thanks to my closest supervisor Assoc. prof. Amany Badr El-Deen Abd-El-Aziz, Associate Professor of Microbiology, Microbiology Department at National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority for her scientific Assistances, direct supervision and support during the stages of this work, helping me in the experimental work, solving all the problems which I had to face, kind care during the progress of this study, constructive criticism throughout the sources of study and her hard work in finishing of this work. advice, and patiently answering my questions, encouragement, through the whole stages of this thesis.

It is a great pleasure for me to express my grateful thanks to prof. Zakaria Ahmed Mattar, Professor of Microbiology, Microbiology Department at National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority for his effective contributions, scientific Assistances, and support during the stages of this work, helping me in the experimental work, solving the problems which I had to face

I wish to express my deepest sense of gratitude and sincerest appreciation to my wife Habiba Nagah Sadek for her kindly help and supporting during our life.

Also, I would like to thank all of those that helped me directly or indirectly to complete my thesis.

It is my pleasant duty to express gratitude to the botany department for its encouragement through this study.

Contents

	Page
List of Tables	I
List of Figures	III
List of Abbreviations	VII
Abstract	1
I. Introduction	4
Aim of the work	7
II. Literature Review	8
Dental caries	8
a) The oral cavity as a resident for microorganisms	8
b) Dental plaque	10
c) Bacterial plaque	11
d) Role of bacteria in dental caries	12
Effect of active plant agents on dental cariogenic bacteria	15
a) Plant agents as herbal medicine	17
b) Azadirachta indica (Neem)	19
c) Punica granatum (Pomegranate)	21
d) Effect of solvent on plant extraction	23
Nanoparticles as a source of broad spectrum antimicrobial agent	24
a) Nanoparticles	24
b) Top-down and bottom-up approaches for nanoparticles synthesis	26
Top-down approach	
Bottom-up approach	27
c) Green synthesis of nanoparticles by active plant agents	29
d) Biosynthesized metallic nanoparticles as bioactive compound	32
Gamma radiation and green nanobiotechnology	36
a) Radiation	36
b) Gamma radiation (γ)	37
c) Role of Gamma radiation in the biosynthesis of nanoparticles	38
III. Materials and Methods	41
Materials	
Plaque samples	41
Plant samples	42
a) Azadirachta indica (Neem)	42
b) Punica granatum (Pomegranate)	42
Culture media	43
a) Nutrient Agar medium	43

b) Malt Agar	43
c) Mitis Salivarius Agar	44
d) Brain heart infusion broth	45
Cell culture	45
Solvents	46
Chemicals	46
Methods	47
Isolation from the collected plaque samples	47
a) Plaque sample collection	47
b) Cultivation of the collected samples microorganisms	47
c) Purification of bacterial isolates	48
d) Identification of bacterial isolates	48
e) Preservation of the isolated bacteria using freeze-drying process	49
Preparation and extraction of the tested Plants	49
a) Plant material processing	49
b) Preparation of the plant samples	50
c) Extraction of the two plant samples using different solvents	50
Preparation of different extract concentrations	51
a) Antibacterial assays of Neem extracts	52
b) Inhibition zone measurement against the selected bacterial isolates	52
c) Comparative antibacterial assay of neem and pomegranate extracts	53
d) Inhibition zone measurement of the two tested plant extracts	54
Viewing insight antibacterial effect using Scanning electron microscopy (SEM)	54
Evaluation of the antibacterial efficiency of the plant extract using Fourier transforms infrared (FTIR) spectrometer	55
Estimation of the total phenolic (TPC) of the chosen plant extract	56
Determination of the total flavonoid content (TFC) of the tested plant extract	57
Green Biosynthesis of nanoparticles using the pomegranate extract and gamma radiation	58
Characterization analysis of the biosynthesized nanoparticles	60
a) UV-Visible spectroscopy analysis	60
b) Antibacterial effect of the biosynthesized NPs	61
c) Inhibition zone measurement	62
d) Fourier transforms infrared (FTIR) spectrometer	63
e) The X-ray diffraction (XRD) analysis	63
f) Transmission electron microscopy (TEM)	65
g) Cell viability and Cytotoxicity using Sulforhodamine B Routine	
Analysis	65

Antibacterial effect of composite resin icorpoating zinc oxide	67
nanoparticles on Streptococcus mutans	
Disc agar diffusion (DAD) test	67
Statistical analysis	68
IV. Results	69
Isolation and Identification of different strains of dental microorganisms	69
Antibacterial screening of neem leaves, bark and sticks against the four selected streptococcal isolates using different solvents and concentrations	77
Comparative antibacterial effect of neem sticks and pomegranate peels extracts (PPE) using three different solvents and concentrations	84
Scanning electron microscope of untreated and treated streptococcal isolate with pomegranate peels acetonic extract	89
Fourier Transforms Infrared (FTIR) spectra for the potent plant	90
extract	
Total phenolic and flavonoid contents estimation	91
a) Determination of total phenolic contents (TPC)	92
b) Determination of total flavonoid content (TFC)	93
Biosynthesized Zinc Oxide nanoparticles (ZnO Nps) using pomegranate peels extract (PPE) and gamma radiation	94
UV-Visible spectroscopy	96
Stability test for the biosynthesized ZnO nanoparticles	99
Sensitivity of <i>Streptococcus mutans</i> to chemically prepared ZnO, pomegranate peels extract and biosynthesized ZnO NPs	102
Fourier Transforms Infrared spectrum for Zinc oxide/pomegranate nanoparticles	106
X-ray diffraction analysis	108
High-resolution Transmission electron microscope	111
Viability % of Human oral epithelial cells (OEC) treated with biosynthesized ZnO Nps	113
Antibacterial activity of zinc oxide nanoparticles/composite against S.mutans	116
Antibacterial properties using disc diffusion assay	118
V. Discussion	119
VI. Conclusion	134
VII. Recommendation	135
IX. Summary	136
X. References	141

List of Tables

Table	Title	Page
No.		No.
1	Prepared conditions of pomegranate peels extract subjected	59
	to different doses of gamma radiation 20 KGy, 40 KGy, 60	
	KGy and 80 KGy	
2	The isolated microorganisms grown on non-selective media	70
3	RapID STR biochemical Identification system among the	72-73
	Streptococcal isolates on selective media	
4	Number and Isolation frequency (%) of Streptococci species	75
	in the 37 Streptococcal isolates	
5	Four selected isolates of Streptococcus mutans	76
6	Antibacterial effect of different concentrations of deionized	80
	water neem plant extracts against the four streptococcal	
	isolates	
7	Antibacterial effect of ethanolic neem plant extracts against	81
	the four streptococcal isolates	
8	Antibacterial effect of different concentrations of acetonic	82
	neem plant extracts against the four streptococcal isolates	
9	Inhibition zone diameter of neem sticks and Pomegranate	86
	peels extracts dissolved in DMSO with concentrations of	
	10%, 20% and 50%	
10	Composition of pomegranate peels acetonic extract using	91
	FTIR spectra	

11	Gallic acid standards absorbance for determination of total	92
	phenolic content of pomegranate peels acetonic extract at	
	630 nm	
12	Absorbance of total phenolic content of pomegranate peels	92
	acetonic extract	
13	Rutin standards absorbance for determination of total	93
	flavonoid content at 420 nm.	
14	Absorbance and TFC of pomegranate peels acetonic extract	93
15	Sensitivity of <i>S. mutans</i> to different types of ZnO NPs	102
16	Composition of pomegranate peels acetonic and deionized	106
	water extract using FTIR spectra	
17	Viability % of oral epithelial cells treated with zinc	114
	oxide/pomegranate peels extract nanoparticles.	
18	Inhibition zone diameter of ZnO NPs/composite	118

List of Figures

Figure No.	Title	Page No.
1	Stages of colonization and infection by S. mutans on the	14
	tooth surface	
2	Top-down and bottom-up approaches	26
3	Scheme for metallic nanoparticle synthesis	29
4	Green synthesis of metal nanoparticles	29
5	Plant extract as capping and stabilizing agent	33
6	Radiation and green synthesis of nanoparticles	39
7	Leaves, bark and sticks of Neem plant	42
8	Photo of Streptococcus mutans on MS (selective) agar	71
	plate.	
9	Gram staining of S. mutans isolates (Ref. No. 100)	71
	under light microscope oil lens 1000x.	
10	RapID TM STR Panel for streptococci identification	74
11	Distribution of isolated Streptococci identified by	75
	RapID STR system test	
12	Enzymatic profile of <i>S. mutans</i> isolate (Ref. No. 136)	76
13	Acetone extraction for neem plant sticks, leaves and	77
	bark	
14	Deionized water neem plant extracts dissolved in	80
	DMSO	
15	Ethanolic Neem plant bark, leaves and sticks extract	81
	dissolved in DMSO	

16	Acetonic Neem plant bark, leaves and sticks extracts dissolved in DMSO	82
177		0.2
17	Representative plates showing the antibacterial activity	83
	against S. mutans (S1).	
18	Acetonic, ethanolic and deionized water extracts of	84
	Pomegranate peels.	
19	Inhibition zones diameters of Neem sticks extracts and	87
	pomegranate peels extracts against the selected	
	isolates.	
20	Antibacterial activity of different concentrations of	88
	acetonic pomegranate peels extract against S. mutans	
	(S1)	
21	Insight viewing of <i>S. mutans</i> before and after treatment	89
	with pomegranate peels acetonic extract via Scanning	
	electron microscope.	
22	FTIR spectrum of concentrated acetonic pomegranate	90
	peels extract dissolved in DMSO	
23	Calibration curve of gallic acid for determination of	92
	total phenolic content of pomegranate peels acetonic	
	extract at 630 nm.	
24	Calibration curve of rutin for determination of total	93
	flavonoid content at 420 nm.	
25	Pomegranate peels acetonic and deionized water	94
	extract	
26	Visual observation of ZnCl color change of	95
	biosynthesized ZnO nanoparticles.	