

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

FEASIBLE TECHNIQUE FOR IN STREAM AGRICULTURAL DRAINAGE WASTEWATER TREATMENT

A Thesis
Submitted To The Faculty Of Engineering
Ain Shams University For The Fulfillment
Of The Requirement Of Ph. Degree
In Civil Engineering

Prepared By

Eng. Zainab Abdelaziz Mohamed Mahmoud El Hefny B.Sc. In Civil Engineering, May 1999, Faculty Of Eng., Ain Shams Univ., Cairo, Egypt

M.Sc. Degree In Civil Engineering March 2018, Sanitary & Environmental Engineering, Faculty Of Eng., Ain Shams Univ., Cairo, Egypt

Supervised By

Prof. Dr. Ghada Mahmoud Samy

Prof. Of Hydraulics And Water Resources, Irrigation & Hydraulics Department, Faculty Of Engineering , Ain Shams Univ., Cairo, Egypt

Prof. Dr. Mohamed El Hosseiny El Nadi

Prof. Of Sanitary & Environmental Eng., Public Works Department, Faculty Of Engineering, Ain Shams Univ.

Dr. Nany Aly Hassan Nasr,

Associate Professor Of Sanitary & Environmental Engineering, Faculty Of Engineering, Ain Shams
University, Cairo, Egypt

Dr. Mona Abdelhamid Hagrass, Associate Prof. Irrigation And Hydraulics Department, Faculty Of Engineering , Ain Shams Univ.

2022

FEASIBLE TECHNIQUE FOR IN STREAM AGRICULTURAL DRAINAGE WASTEWATER TREATMENT

A Thesis For

The Ph. Degree In Civil Engineering

(Irrigation And Hydraulics)

Ву

Eng. Zainab Abdelaziz Mohamed Mahmoud El Hefny B.Sc. In Civil Engineering, May 1999, Faculty Of Eng., Ain Shams Univ., Cairo, Egypt

M.Sc. Degree In Civil Engineering March 2018, Sanitary & Environmental Engineering, Faculty Of Eng., Ain Shams Univ., Cairo, Egypt

Thesis Approval

Examiners Committee	Signature
Prof. Dr. Hesham Sayed Abdel	naleem Professor Of Sanitary Eng Faculty Of
Eng., Cairo Univ.	
Prof. Dr. Mohamed M. Nour E	din Owis
Professor Of Hydraulics A	and Water Resources,
Irrigation & Hydraulics D	epartment, Faculty Of Eng., Asu.

Prof. Dr. Ghada Mahmoud Samy
Prof. Of Hydraulics And Water Resources,
Irrigation & Hydraulics Department, Faculty Of Eng., Asu.
Prof. Dr. Mohamed El Hosseiny El Nadi
Prof. Of Sanitary & Environmental Engineering.
Public Works Department, Faculty Of Eng., Asu.

Date: ---/--/2022

DEDICATION

It Took From Me A Portion Of My Life To Finish This Work, And I Return The Credit Of Finishing This Work To God.

I Wish To Dedicate This Work To Who Suffered To Educate, Prepare, Build Capacity And Help Myself
To Be As I Am,

TO

MY MOTHER

AND

MYFATHER

AND I LIKE TO DEDICATE THE WORK TO MY LOYELY CHILDREN AND

MY HUSPEND

STATEMENT

This Dissertation Is Submitted To Ain Shams University, Faculty Of Engineering For The Degree Of Phd In Civil Engineering.

The Work Included In This Thesis Was Carried Out By The Author In The Department Of Irrigation And Hydraulics, Faculty Of Engineering, Ain Shams University, From October 2019 To March 2022.

No Part Of The Thesis Has Been Submitted For A Degree Or A Qualification At Any Other University Or Institution.

The Candidate Confirms That The Work Submitted Is His Own And That Appropriate Credit Has Been Given Where Reference Has Been Made To The Work Of Others

Date: - --- /-- /2022

Signature: - ------ Name:

- Zainab Abdelaziz Mohamed Mahmoud El Hefny

ACKNOWLEDGMENT

The Candidate Is Deeply Grateful To Prof. Dr. Mohamed El Hosseiny El Nadi, Professor Of Environmental And Sanitary Engineering, Faculty Of Engineering, Ain Shams University, For Help, Encourage, Co-Operation Sponsoring And Patient Advising During Preparation Of This Research.

And Deep Thanks To Prof. Dr. Ghada Mahmoud Samy, Professor Of Hydraulics And Water Resources, Irrigation & Hydraulics Department, Faculty Of Engineering, Ain Shams University For Help, Encourage, Co-Operation During Preparation Of This Research.

And Deep Thanks To Dr. Nany Aly Hassan Nasr, Associate Professor Of Sanitary & Environmental Engineering, Faculty Of Engineering, Ain Shams University, For Help, Encourage, Co-Operation During Preparation Of This Research.

And Deep Thanks To Dr. Mona Abdel Hamid El Sayed Hagras, Associate Prof. Irrigation And Hydraulics Department- Irrigation And Hydraulics - Ain Shams University For Help, Encourage, Co-Operation During Preparation Of This Research.

And Deep Grating To The Staff And Workers In Faculty Of Engineering, Public Works Dept Specially Whom Work In The Sanitary Laboratory For Their Support, Encourage And Co-Operation During The Preparation Of This Research.

ABSTRACT

Name: Zainab Abdelaziz Mohamed Mahmoud El Hefny

Title: Feasible Technique For In Stream Agricultural Drainage Wastewater Treatment

Faculty : Faculty Of Engineering, Ain Shams University : Civil Eng., Irrigation And Hydraulic Department

Summary :

This Research Aims To Study Three Different Methods Used Instream For Drain Water Treatment. Application Of Agricultural Waste (Rice Husk), Plastic Material, And Rotating Paddles, To Improve The Self-Purification Process Through The Stream And Achieve The Possibility Of Its Water Reuse.

A Pilot Was Made At Faqous Wwtp, Sharkia Governorate, Near To Bahr Al-Baqar Drain Bank, Simulated Five Parallel Channels Built From Bricks Plastered By Epoxy Mortar. The First Channel Represents The Drain Water Without Treatment As Raw Water. The Second, Third, Fourth And Fifth Channels Used The Treated Media With Different Lengths From 50 Cm, 80 Cm, 110 Cm And 140 Cm. Samples Were Taken From Different Locations From Each Channel, The Channel Beginning, After The Treated Media By One Meter, Then 5 Meters And At 10 Meters From The Channel Beginning.

Three Methods Were Tested, The First Used Natural Material By Agricultural Wastes Of Rice Husk, The Second Used Artificial Media Of Overlapping Perforated Plastic Boxes, And The Third Using Rotating Paddles Rotated Due To The Water Velocity In The Stream. Experiments Were Conducted On 3 Operating Cycles One For Each Method, And In Each Cycle Water Samples Were Taken A Week After The Start Of Operation And For A Period Of Six Weeks To Measure The Different Elements.

Laboratory Experiments Showed That The Removal Ratio Using 140 Cm With All The Applied Methods Is The Higher In Removal Efficiency Than The Other Lengths, Where It Achieved Removal Ratios Of 20-87% With Rice Husk And From 34-87% With Plastic And From 47-85% With Rotating Paddles For All Measured Items, Which Are Bod, Cod. Tss, Hm And An Increase Ratio In Do Were Ranging From 20-80% For The Three Methods.

Technical, Financial And Environmental Comparisons Were Made Between The Three Methods Showed That Using Rice Husk Is The Best For Treating Agricultural Drain Water. So The Simulation Model Was Made For It.

The Mathematical Simulating Equations Were Deduced To Determine The Removal Ratio Of Each Element With Rice Husk Media Application Using The Data Of The First Four Weeks, And Its Verification Was Confirmed By Using The Results Of The Fifth And Sixth Weeks. The Produced Simulating Equations Are As Follows:

1- For CODWith An Error Ratio Of -0.01 & +0.1%

E = -7e-16ci 2 + 0.034ci +19.228 R2 = 1.0

2- For BOD, With An Error Ratio Of -0.96 & -1.23%

E= -9e-05ci2 + 0.1336ci +36,655 R2 = 1

3- For TSS With An Error Ratio Of -13.52 & +12.29%

E=87.418 Lnci – 517.6 R2 =0.1271

4- For HM With An Error Ratio Of -4.21 & +15.65%

E= 7.3429 Lnci + 26.451

R2 = 0.0311

5- For DO With An Error Ratio Of -0.23 & +5.62%

E= 7.3429 Lnci + 26.451

R2 = 0.0311

Supervisors:

Prof. Dr. Ghada Mahmoud Samy

Prof. Dr. Mohamed El Hosseiny El Nadi,

Dr. Nany Aly Hassan Nasr

Dr. Mona Abdel Hamid El Sayed Hagras

ABBREVLATIONS

Ann	Artificial Neural Network
Asb	Aerated Stabilization Basin
Baf	Biological Aerated Filter
Bod	Biochemical Oxygen Demand
\mathbf{Bod}_5	Biochemical Oxygen Demand At The Fifth Day Of
	The Experiment
Cod	Chemical Oxygen Demand
Dbaf	Dual Biological Aerated Filter
Do	Dissolved Oxygen
Eb	Eucalyptus Bark

Fbr Fluidized Bed Reactor

Gac Granular Activated Carbon
Mbr Membrane Biological Reactor
Mlp Multilayer Layer Perceptron

Mse Mean Square Error Prh Phosphate Rice Husk Pvc Polyvinyl Chloride

Rbc Rotating Biological Contactor

Rbf Radial Basis Function S.P. Self Purification

Ss Suspended Solids
Ssfw Subsurface Flow Wetland

Tb Tubular

Tds Total Dissolved Solids

Tf/Sc Trickling Filter / Solids Contact

Tss Total Suspended Solids
Ufbr Up Flow Fixed Bed Reactor

Vf Vertical Flow

Vfw Vertical Flow Wetland Vss Volatile Suspended Solids

Xf Cross Flow

Table Of Contents

	Page
Cover	Ī
Thesis Approval	Ii
Dedication	Iii
Statement	Iv
Acknowledgement	${f V}$
Abstract	Vi
Abbreviations	Vii
Table Of Contents	Viii
List Of Figures	\mathbf{X}
List Of Tables	Xii
Chapter I: Introduction	1-5
1.1 Background	1
1.2 Study Objectives	1
1.3 Scop Of Work	2
1.3.1 Theoretical Work	2
1.3.1.1 Data Collection	2
1.3.1.2 Data Analysis And Discussion	2
1.3.1.3 Modeling	2
1.3.1.4 Thesis Preparation	3
1.3.2 Experimental Work	3
1.4 Thesis Organization	4
Chapter I: Introduction	4
Chapter Ii: Literature Review	4
Chapter Iii: Material And Methods	5
Chapter Iv: Results Of Experimental Work	5
Chapter V: Study Modeling	5
Chapter Vi: Discussion	5
Chapter Vii: Conclusions	5
Chapter 2: Literature Review	6-49
2.1 General	6
2.1.1 Egyptian Agrictulural Drains	7
2.1.2 Advantages & Disadvantages Of Drainage System	9
2.1.3 Sources Of Drains Waterpollution	11
2.1.3.1 Drains Point Source Of Pollution	12
2.1.3.2 Drains Non-Point Source Of Pollution	13
2.1.4 Need For Reuse Of Agricultural Drainage	15
2.1.5 Types Of Drainage Systems	15
2.2national	17
2.3 Need For Drainage Water Treatment	18
2.4 Drains Water Treatment Procedures	19
2.4.1 Stream Body End Drains Water Treatment	20
2.4.2 Drains Water Treatment Near By Stream	21
2.4.3 Drains Water Treatment Inside Stream	21

2.5 Drains Water Treatment Technique	22
2.5.1 Physical Treatment Techniques	22
2.5.1.1 Screening	23
2.5.1.2 Sedimentation	24
2.5.1.3 Floatation	25
2.5.1.4 Centrifugation	26
2.5.1.5filtration	26
2.5.2 Chemical Treatment Techniques	28
2.5.2.1 Coagulation And Flocculation	29
2.5.2.2 Direct Chemical Reaction	29
2.5.2.3aearation & Oxidation	30
2.5.2.4adsorption	30
2.5.2.5 Electric Analysis And Dialysis	31
2.5.2.6 Distillation	32
2.5.2.7 Ion Exchange	32
2.5.2.8 Chemical Disinfection	32
2.5.3 Biological Treatment Techniques	33
2.5.3.1 Aerobic Suspended Growth (Activated Sludge System)	35
2.5.3.2 Aerobic Attached Growth Processes (Biological Filters)	36
2.5.3.3 Stabilization Ponds	38
2.5.3.4aerated Lagoons	38
2.5.3.5 Wetlands	39
2.5.3.6 Algae Ponds	40
2.5.3.7 Anaerobic Biological Treatment	40
2.6. Drains Water Treatment Applications	41
2.6.1 World Experience	44
2.6.2 Egypt Experience	44
Chapter Iii: Materials And Methods	50-63
3.1 study location	50
3.2 Applied Pilot Unit	50
3.2.1 Pilot Describtion	50
3.2.2 Pilot Components Details	51
3.3 Experimental Work	52
3.3.1 Application Of Agriculture Wastes	53
3.3.2 Application Of Plastic Media	54
3.3.3 Application Of Natural Rotors	54
3.4 Operation Procedure	54
3.5 Sampling	55
3.6 Measurments Analysis	56
3.6.1 Ph Value	56
3.6.2 Dissolved Oxygen (Do)	57
3.6.3 Biochemical Oxygen Demand (Bod)	57
3.6.4 Chemical Oxygen Demand (Cod)	57
3.6.5 Total Dissolved Solid (Tds)	58
3.6.6total Suspended Solids	58
3.6.7 Heavy Metals (Hm)	59

Chapter Iv: Results Analysis And Discussions	59
4.1 Introduction	63
4-2 Experimental Works Result For Agriculture Wastewater	63
4-2-1 Agricultural waste Media Results	64-
4-2-2 Plastic Media Results	176
4-2-3 Rotating Paddles Results	64
Chapter V: design equation	64
5.1 Introduction	64
5-2 Agriculture Waste Method Results Discussion	103
5-2-1 Do Results Discussion	141
5-2-2 Bod Results Discussion	177-
5-2-3 Cod Results	177
5-2-4 Tss Results Discussion	177
5-2-5 Hm Results Discussion	177
5-3 Discussion Of Secound Run Results (Plastic Media Method)	177
5-3-1 Do Results Discussion	178
5-3-2bod Results Discussion	178
5-3-3 Cod Results Discussion	179
5-3-4tss Results Discussion	180
5-3-5 Hm Results Discussion	180
5-4 Discution For Rotating Paddles Method	180
5-4-1 Do Results Discussion	180
5-4-2 Bod Results Discussion	181
5-4-3 Cod Results Discussion	181
5-4-4 Tss Results Discussion	182
5-4-5 Hm Results Discussion	183
5-5 Comparison Between Methods Results	183
5-5-1 Comparison For Do Results	184
5-5-2 Comparison For Bod Results	184
5-5-3comparison For Cod Results	185
5-5-4comparison For Tss Results	185
5-5-5 Comparison For Hm Results	186
5-6 Technical Comparison Between Methods	187
5-7 Finanical Comparison Between Methods	188
5-7-1 Agricultural Waste Method	189
5-7-2plastic Media Method	190
5-7-3 rotating Paddels Method	190
	191
	191
Chapter Vi: Discussion	32-45
6.1 Introduction	193
6.2 Background	193
6.3 Water Quality Modeling	194
6.3.1 Hydraulic Water Quality Models	194
6.3.1.1 STREAM HYDRAULICS WATER QUALITY MODELS	194

6.3.1.2 STREAM GEOMETRICS WATER QUALITY MODELS	197
6.3.2 Biological Water Quality Models	198
6.3.3 Self Purification Models	200
6.3.4Mixed Model (Self Purification And Biological Filtration)	201
6.4 Model Production6	203
6.4.1 COD MODEL	203
6.4.1.1 Comparison With Previous Studies	204
6.4.1.2 Regression Analysis	206
6.4.2 BOD MODEL	211
6.4.3 TSS MODEL	218
6.4.4 HM MODEL	225
6.4.5 DO MODEL	234
6-5 Summary Of Produced Equations	234
6.6 Model Verification	241
6.6.1 Verification For Cod Model	241
6.6.2 Verification For Bod Model	241
6.6.3 Verification For Tss Model	242
6.6.4 Verification For Hm Model	242
6.6.5 Verification For Do Model	245
	245
Chapter Vii: Conclusions	247-
7.1 Over View	251
7.2 Conclusions	247
7.2.1experimental Work Conclusion	248
7.2.2 Modeling Conclusion	248
7.3 Recommendations	249
7.4 Further Work	250
	251
	251

List Of Figures

	<u>========</u>	Page
Chapter Ii Figure 2.1.	Drains in Delta	6
Figure 2.2.	Positive effects and impacts of agricultural drainage	8
Figure 2.3.	Bar Screens	22
Figure 2.4.	Aeration Process	29
Figure 2.5.	Schematic diagram of a suspended-growth ATU	32
Figure 2.6.	Conventional Trickling Filter Unit	34
Figure 2.7.	Waste Stabilization Pond, in As-Samra, Jordan	35
Figure 2.8.	Facultative Pond Process	35
Figure 2.9.	Constructed Wetlands	37
Figure 2.10	Constructed Algae Ponds	38
Chapter Iii Figure 3.1.	Study Location Site Map	50
Figure 3.2.	Photo of the Applied Pilot	52
Figure 3.3.	Section of the Applied Pilot	52
Figure 3.4.	Plan of the Applied Pilot	52
Figure 3.5.	Application of rice husk in the study pilot	53
Figure 3.6.	Application of plastic media in the study pilot	54
Figure 3.7.	Application of natural rotor in the study pilot	55
Figure 3.8.	pH Meter	57