

## بسم الله الرحمن الرحيم

 $\infty\infty\infty$ 

تم رفع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

# Analytical Investigation of Certain Antidiabetic Drugs

Thesis Presented by

#### Sarah Elnadi Hassan Elnadi

B.Sc. in Pharmaceutical Sciences, Ain Shams University (2011)

#### **Submitted**

for the Partial Fulfillment of the Degree of Master in Pharmaceutical Sciences

"Pharmaceutical Analytical Chemistry"

## Supervised by

## Prof. Dr. Maha Farouk Abdel-Ghany

Professor of Pharmaceutical Analytical Chemistry Faculty of Pharmacy, Ain Shams University

### Ass. Prof. Dr. Samah Abdel-Sabour Mohammed

Associate Professor of Pharmaceutical Analytical Chemistry Egyptian Drug Authority

#### Dr. Yossra Ahmed Trabik

Lecturer of Pharmaceutical Analytical Chemistry Faculty of Pharmacy, Ain Shams University

Pharmaceutical Analytical Chemistry Department Faculty of Pharmacy-Ain Shams University (2022)

## **Acknowledgment**

First and foremost, praise be to ALLAH for this work

I would like to express my deepest gratitude and sincere appreciation to **Prof. Dr. Maha Farouk Abdelghany**, Professor of pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Ain Shams University, for her kind and expert supervision, her thoughtful and helpful direction, advice and encouragement throughout this thesis.

I would like to express my deepest thanks to **Associate Prof. Dr. Samah Abdel-Sabour Mohammed**, Associate Professor of pharmaceutical Analytical Chemistry, Egyptian drug authority, for her great efforts with me. Her guidance and support nourished my intellectual maturity that I will benefit from for a long time.

I would like to express my deepest gratitude and great respect to **Dr. Yossra Ahmed Trabik**, Lecturer of pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Ain Shams University, for her great efforts, keen supervision, continuous support, patience, valuable advice, truthful care, sincere encouragement and her real kind.

I would like to express my sincere appreciation to all my colleagues and sisters in **(EDA)** for their friendly cooperation and continuous support. I appreciate their love and care.

Also I am deeply grateful to my family and specially my mother (**Dr.Eman**) for their continuous support.

Sarah ELnadi Hassan

## [Contents]

| <b>Contents</b>                                     | Page  |
|-----------------------------------------------------|-------|
| Contents                                            | i     |
| List of Tables                                      | vii   |
| List of Figures                                     | xii   |
| List of abbreviations                               | xvi   |
| Preface                                             | xviii |
| English summary                                     | XX    |
| Part (I)                                            |       |
| General Introduction                                |       |
| I.1.Diabetes Mellitus                               | 2     |
| I.2.Main diabetes subtypes                          | 2     |
| I.3.Treatment                                       | 3     |
| I.3.1.Insulin and its analogues                     | 3     |
| I.3.2.Oral hypoglycemic drugs                       | 4     |
| I.3.2.1.Sulphonylureas (Insulin secretagogues)      | 4     |
| I.3.2.2.Biguanides                                  | 4     |
| I.3.2.3.Alpha-Glucosidase inhibitors                | 4     |
| I.3.2.4.Meglitinides                                | 4     |
| I.3.2.5. Thiazolidinediones (Insulin sensitizers)   | 4     |
| I.3.2.6.Dipeptidyl peptidase 4 inhibitors           | 4     |
| I.3.2.7.Sodium–glucose cotransporter 2 inhibitors   | 5     |
| I.4.Studied drugs                                   | 6     |
| I.4.1.Metformin Hydrochloride                       | 6     |
| I.4.2.Canagliflozin                                 | 7     |
| I.4.3.Empagliflozin                                 | 8     |
| I.4.4.Dapagliflozin                                 | 9     |
| I.5.Literature review of the studied drugs          | 10    |
| I.5.1.Chromatographic methods for the studied drugs | 10    |
| I.5.1.1.HPLC methods                                | 10    |
| I.5.1.2.TLC methods                                 | 21    |
| I.5.2.Spectroscopic methods                         | 26    |
| I.5.2.1.Spectrophotometric methods                  | 26    |
| I.5.2.2.Spectrofluorimetric methods                 | 29    |

| [Cont                                                                  | ents |
|------------------------------------------------------------------------|------|
| I.5.2.3.FTIR methods                                                   | 31   |
| I.5.3.Electrochemical methods                                          | 31   |
| I.5.4.CE methods                                                       | 34   |
| PART (II) Spectroscopic methods for determination of the studied drugs | e    |
| Section (A)                                                            |      |
| Stability indicating spectrophotometric methods for                    |      |
| simultaneous determination of Metformin Hydrochloric                   | de   |
| and Canagliflozin in the presence of Canagliflozin compl               | ete  |
| oxidative degradation product                                          |      |
| II.A.1.Introduction                                                    | 38   |
| II.A.2.Experimental                                                    | 40   |
| II.A.2.1.Instrumentation                                               | 40   |
| II.A.2.2.Pure samples and pharmaceutical formulation                   | 40   |
| II.A.2.3.Chemicals and reagents                                        | 41   |
| II.A.2.4.Standard solutions                                            | 41   |
| II.A.2.5.Preparation of calibration curves                             | 41   |
| II.A.2.6.Forced degradation studies                                    | 41   |
| II.A.2.7.Preparation of pharmaceutical samples                         | 42   |
| II.A.2.8.Preparation of laboratory prepared mixtures                   | 43   |
| II.A.2.9.Procedures                                                    | 43   |
| II.A.2.9.1.Spectral characteristics of CANA, MET and                   | 43   |
| CANAD                                                                  |      |
| II.A.2.9.2.Method validation                                           | 44   |
| II.A.3.Results and discussion                                          | 46   |
| II.A.3.1.Method development                                            | 48   |
| II.A.3.2.Method validation                                             | 49   |
| II.A.3.3.Pharmaceutical dosage forms & standard addition               | 50   |
| technique                                                              |      |
| II A 3 4 Statistical analysis                                          | 51   |

## Section (B)

| Spectrophotometric methods for simultaneous                  |     |
|--------------------------------------------------------------|-----|
| determination of Metformin Hydrochloride, Empagliflo         | zin |
| and Canagliflozin in their ternary mixture                   |     |
| II.B.1.Introduction                                          | 79  |
| II.B.2.Experimental                                          | 80  |
| II.B.2.1.Instrumentation                                     | 80  |
| II.B.2.2.Pure samples and pharmaceutical formulation         | 80  |
| II.B.2.3.Chemicals and reagents                              | 80  |
| II.B.2.4.Standard solutions                                  | 80  |
| II.B.2.5.Preparation of calibration curves                   | 81  |
| II.B.2.6.Preparation of pharmaceutical samples               | 81  |
| II.B.2.7.Preparation of laboratory prepared mixtures         | 81  |
| II.B.2.8.Procedures                                          | 81  |
| II.B.2.8.1.Spectral characteristics and wavelength selection | 82  |
| II.B.2.8.2.Method validation                                 | 83  |
| II.B.3.Results and discussion                                | 85  |
| II.B.3.1.Method development                                  | 86  |
| II.B.3.2.Method validation                                   | 87  |
| II.B.3.3.Pharmaceutical dosage forms & standard addition     | 89  |
| technique                                                    |     |
| II.B.3.4.Statistical analysis                                | 90  |
| Section (C)                                                  |     |
| A green Fourier Transform Infrared Spectroscopy for          | r   |
| determination of Canagliflozin using potassium bromio        |     |
| disc technique                                               |     |
| II.C.1.Introduction                                          | 118 |
| II.C.2.Experimental                                          | 118 |
| II.C.2.1.Instrumentation                                     | 118 |
| II.C.2.2.Pure samples and pharmaceutical formulation         | 118 |
| II.C.2.3.Chemicals and reagents                              | 119 |
| II.C.2.4.Stock standard                                      | 119 |
| II.C.2.5.Preparation of calibration curve                    | 119 |

| [Con                                                             | tents] |
|------------------------------------------------------------------|--------|
| II.C.2.6. Preparation of pharmaceutical samples                  | 119    |
| II.C.2.7.Procedures                                              | 119    |
| II.C. 2.7.1.Selection of analytical wave number                  | 119    |
| II.C. 2.7.2.Method validation                                    | 120    |
| II.C.3.Results and discussion                                    | 121    |
| II.C.3.1.Method development                                      | 121    |
| II.C.3.2.Method validation                                       | 122    |
| II.C.3.3.Pharmaceutical dosage form& standard addition technique | 123    |
| II.C.3.4.Statistical analysis                                    | 123    |
| II.C.3.5.Assessment of the green nature of the proposed          | 123    |
| method                                                           |        |
| Section (D)                                                      |        |
| Synchronous spectrofluorimetric determination of                 |        |
| Canagliflozin                                                    |        |
| II.D.1.Introduction                                              | 134    |
| II.D.2.Experimental                                              | 134    |
| II.D.2.1.Instrumentation                                         | 134    |
| II.D.2.2.Pure samples and pharmaceutical formulation             | 134    |
| II.D.2.3.Chemicals and reagents                                  | 134    |
| II.D.2.4.Standard solutions                                      | 135    |
| II.D.2.5.Preparation of calibration curves                       | 135    |
| II.D.2.6.Preparation of pharmaceutical samples                   | 135    |
| II.D.2.7.Preparation of placebo                                  | 136    |
| II.D.2.8.Procedures                                              | 136    |
| II.D.2.8.1.Synchronous spectrofluorimetric procedure             | 136    |
| II.D.2.8.2.Method validation                                     | 136    |
| II.D.3.Results and discussion                                    | 138    |
| II.D.3.1.Method development                                      | 138    |
| II.D.3.2.Method validation                                       | 140    |
| II.D.3.3.Pharmaceutical dosage forms & standard addition         | 141    |
| technique                                                        |        |
| II.D.3.4.Uniformity of dosage unit by weight variation           | 141    |

| II.D.3.5.Statistical | ana | lysis |
|----------------------|-----|-------|
|----------------------|-----|-------|

#### 141

## PART (III)

Stability indicating method for simultaneous determination of Metformin Hydrochloride, Empagliflozin, Dapagliflozin and Canagliflozin in the presence of Metformin Hydrochloride complete oxidative degradation product by High Performance Liquid Chromatography

| III.1.Introduction                                                | 158 |
|-------------------------------------------------------------------|-----|
| III.2.Experimental                                                | 158 |
| III.2.1.Instrumentation                                           | 158 |
| III.2.2.Pure samples and pharmaceutical formulation               | 159 |
| III.2.3.Chemicals and reagents                                    | 159 |
| III.2.4.Preparation of mobile phase                               | 159 |
| III.2.5.Preparation of diluent                                    | 159 |
| III.2.6.Stock standard solutions                                  | 159 |
| III.2.7.Preparation of calibration curves                         | 159 |
| III.2.8.Forced degradation studies                                | 160 |
| III.2.9.Preparation of pharmaceutical samples                     | 161 |
| III.2.10.Procedures                                               | 161 |
| III.2.10.1.Chromatographic conditions                             | 161 |
| III.2.10.2.Method validation                                      | 161 |
| III.3.Results and discussion                                      | 164 |
| III.3.1.Method development                                        | 164 |
| III.3.2.Method validation                                         | 165 |
| III.3.3.Pharmaceutical dosage forms & standard addition technique | 167 |
| III.3.4.Statistical analysis                                      | 167 |

#### PART (IV)

Simultaneous determination of Metformin Hydrochloride and Canagliflozin by Capillary electrophoresis: An application to a green approach

| I                                                      | [Contents] |
|--------------------------------------------------------|------------|
| IV.1.Introduction                                      | 186        |
| IV.2. Experimental                                     | 187        |
| IV.2.1.Instrumentation                                 | 187        |
| IV.2.2.Pure samples and pharmaceutical formulation     | 188        |
| IV.2.3.Chemicals and reagents                          | 188        |
| IV.2.4.Standard solutions                              | 188        |
| IV.2.5.Preparation of calibration curves               | 188        |
| IV.2.6. preparation of pharmaceutical sample           | 189        |
| IV.2.7.Procedures                                      | 189        |
| IV.2.7.1.Method parameters                             | 189        |
| IV.2.7.2.Method validation                             | 189        |
| IV.3.Results and discussion                            | 191        |
| IV.3.1.Separation conditions' optimization             | 191        |
| IV.3.2.Factors affects electrophoretic separation      | 192        |
| IV.3.3.Method validation                               | 192        |
| IV.3.4.Pharmaceutical dosage forms & standard addition |            |
| technique                                              |            |
| IV.3.5.Statistical analysis                            | 194        |
| IV.3.6.Assessment of the green nature of the propose   | ed 194     |
| method                                                 |            |
| Part (V)                                               |            |
| General Discussion                                     | 205        |
| References                                             | 214        |

## List of tables

| Table | Table title                                       | Page |
|-------|---------------------------------------------------|------|
| No.   |                                                   | No.  |
| 1     | HPLC methods for the studied drugs                | 10   |
| 2     | TLC methods for the studied drugs                 | 21   |
| 3     | Results of assay validation parameters of DD      | 68   |
|       | method for the determination of CANA & MET        |      |
|       | in bulk powder                                    |      |
| 4     | Results of assay validation parameters of MCR     | 69   |
|       | method for the determination of CANA & MET        |      |
|       | in bulk powder                                    |      |
| 5     | Determination of CANA & MET in bulk powder        | 70   |
|       | by the proposed DD method                         |      |
| 6     | Determination of CANA & MET in bulk powder        | 71   |
|       | by the proposed MCR method                        |      |
| 7     | Determination of CANA & MET in laboratory         | 72   |
|       | prepared mixtures with CANAD by the proposed      |      |
|       | DD method                                         |      |
| 8     | Determination of CANA & MET in laboratory         | 73   |
|       | prepared mixtures with CANAD by the proposed      |      |
|       | MCR method                                        |      |
| 9     | Determination of CANA & MET in                    | 74   |
|       | pharmaceutical formulation by the proposed DD     |      |
|       | method &application of standard addition          |      |
|       | technique                                         |      |
| 10    | Determination of CANA & MET in the                | 75   |
|       | pharmaceutical formulations by the proposed       |      |
|       | MCR method & application of standard addition     |      |
| 1.1   | technique                                         | 7.0  |
| 11    | Statistical comparison between the results of the | 76   |
|       | proposed DD method & reported method for          |      |
| 1     | determination of CANA & MET                       |      |

| 12 | Statistical comparison between the results of the   | 77    |
|----|-----------------------------------------------------|-------|
|    | proposed MCR method & reported method for           |       |
|    | determination of CANA & MET                         |       |
| 13 | Results of assay validation parameters for the      | 105   |
|    | determination of MET, EMPA by the proposed          |       |
|    | MCR method & for the determination of CANA          |       |
|    | directly at zero order in their bulk powder         |       |
| 14 | Results of assay validation parameters of MCDD      | 106   |
|    | method for the determination of MET & EMPA          |       |
|    | in bulk powder                                      |       |
| 15 | Determination of MET, EMPA by the proposed          | 107   |
|    | MCR method &determination of CANA directly          |       |
|    | at zero order in their bulk powder                  |       |
| 16 | Determination of MET & EMPA in bulk powder          | 108   |
|    | by the proposed MCDD method                         |       |
| 17 | Determination of MET, EMPA by the proposed          | 109   |
|    | MCR method & determination of CANA                  |       |
|    | directly at zero order in their laboratory prepared |       |
|    | mixtures                                            |       |
| 18 | Determination of MET & EMPA by the                  | 110   |
|    | proposed MCDD method in their laboratory            |       |
|    | prepared mixtures with CANA                         |       |
| 19 | Determination of MET in pharmaceutical              | 111   |
|    | formulation by the proposed MCR method &            |       |
|    | application of standard addition technique          |       |
| 20 | Determination of MET in pharmaceutical              | 112   |
|    | formulation by the proposed MCDD method &           |       |
|    | application of standard addition technique          | 4.4.5 |
| 21 | Determination of EMPA in pharmaceutical             | 113   |
|    | formulation by the proposed MCR & MCDD              |       |
|    | methods using standard spiking technique            | 111   |
| 22 | Determination of CANA in pharmaceutical             | 114   |
|    | formulation by the proposed zero order method       |       |
|    | & application of standard addition technique        |       |

## [List of Tables]

| 23 | Statistical comparison between the results of      | 115 |
|----|----------------------------------------------------|-----|
|    | determination of MET, EMPA by the proposed         |     |
|    | MCR, determination of CANA directly at zero        |     |
|    | order & reported method                            |     |
| 24 | Statistical comparison between the results of the  | 116 |
|    | proposed MCDD method & reported method for         |     |
|    | determination of MET and EMPA                      |     |
| 25 | Results of assay validation parameters of FTIR     | 128 |
|    | method for the determination of CANA in bulk       |     |
|    | powder                                             |     |
| 26 | Determination of CANA in bulk powder by the        | 129 |
|    | proposed FTIR method                               |     |
| 27 | Determination of CANA in pharmaceutical            | 130 |
|    | formulation by the proposed FTIR method &          |     |
|    | application of standard addition technique         |     |
| 28 | Statistical comparison between the results of the  | 131 |
|    | proposed FTIR method & reported method for         |     |
|    | determination of CANA in pharmaceutical            |     |
|    | formulation                                        |     |
| 29 | Analytical Eco-scale assessment of the proposed    | 132 |
|    | FTIR method                                        |     |
| 30 | Study of solvent effect of water, acetonitrile and | 151 |
|    | methanol; separately in synchronous mode for       |     |
|    | the determination of CANA in bulk powder by        |     |
|    | studying linearity parameters                      |     |
| 31 | Results of assay validation parameters of          | 152 |
|    | Spectrofluorimetric method for the                 |     |
|    | determination of CANA in bulk powder               |     |
| 32 | Determination of CANA in bulk powder by the        | 153 |
|    | proposed method                                    |     |
| 33 | Determination of CANA in pharmaceutical            | 154 |
|    | formulation by the proposed spectrofluorimetric    |     |
|    | method & application of standard addition          |     |
|    | technique                                          |     |

| 34 | Results of uniformity of dosage unit of           | 155 |
|----|---------------------------------------------------|-----|
|    | invokana® film coated tablets by weight           |     |
|    | variation using the proposed method               |     |
| 35 | Statistical comparison between the results of the | 156 |
|    | proposed spectrofluorimetric method & reported    |     |
|    | method for determination of CANA                  |     |
| 36 | Chromatographic conditions of HPLC for            | 177 |
|    | simultaneous determination of MET, EMPA,          |     |
|    | DAPA & CANA                                       |     |
| 37 | Results of assay validation parameters of HPLC    | 178 |
|    | method for the determination of MET, EMPA,        |     |
|    | DAPA & CANA in bulk powder                        |     |
| 38 | Determination of MET, EMPA, DAPA &                | 179 |
|    | CANA in bulk powder by the proposed HPLC          |     |
|    | method                                            |     |
| 39 | Study of robustness of the developed HPLC         | 180 |
|    | method                                            |     |
| 40 | System suitability parameters of the proposed     | 181 |
|    | HPLC method                                       |     |
| 41 | Determination of MET & EMPA in                    | 182 |
|    | pharmaceutical formulation by the proposed        |     |
|    | method & application of standard addition         |     |
|    | technique                                         |     |
| 42 | Determination of DAPA & CANA in                   | 183 |
|    | pharmaceutical formulation by the proposed        |     |
|    | method & application of standard addition         |     |
|    | technique                                         |     |
| 43 | Statistical comparison between the results of the | 184 |
|    | proposed method and reported method for           |     |
|    | determination of MET, EMPA, DAPA & CANA           |     |
| 44 | Results of assay Validation parameters of CE      | 199 |
|    | method for the determination of CANA and          |     |
|    | MET in bulk powder                                |     |
| 45 | Determination of MET and CANA in bulk             | 200 |
|    | powder by the proposed CE method                  |     |

## [List of Tables]

| 46 | Determination of CANA & MET in                    | 201 |
|----|---------------------------------------------------|-----|
|    | pharmaceutical formulation by the proposed CE     |     |
|    | & application of standard addition technique      |     |
| 47 | Statistical comparison between the results of the | 202 |
|    | proposed CE method & reported method for          |     |
|    | determination of MET & CANA                       |     |
| 48 | Analytical Eco-scale assessment of the proposed   | 203 |
|    | capillary electrophoresis method                  |     |
| 49 | Statistical comparison between the proposed       | 210 |
|    | methods & the reported method for                 |     |
|    | determination of MET                              |     |
| 50 | Statistical comparison between the proposed       | 211 |
|    | methods & the reported method for                 |     |
|    | determination of CANA                             |     |
| 51 | Statistical comparison between the proposed       | 212 |
|    | methods & the reported method for                 |     |
|    | determination of EMPA                             |     |

## List of figures

| Fig | Figure caption                                         | Page |
|-----|--------------------------------------------------------|------|
| No  |                                                        | No   |
| 1   | Chemical structure of Metformin Hydrochloride.         | 6    |
| 2   | Chemical structure of Canagliflozin.                   | 7    |
| 3   | Chemical structure of Empagliflozin.                   | 8    |
| 4   | Chemical structure of Dapagliflozin.                   | 9    |
| 5   | Graphical representation of assessing CANA forced      | 52   |
|     | degradation study by the reported HPLC method.         |      |
| 6   | Zero order UV absorption spectra of standard           | 53   |
|     | solutions of CANA, MET, CANAD & their laboratory       |      |
|     | prepared mixture.                                      |      |
| 7   | Ratio spectra of CANA using CANAD divisor.             | 54   |
| 8   | Ratio spectra of MET using CANAD divisor.              | 55   |
| 9   | Second derivative of ratio spectra of CANA using       | 56   |
|     | CANAD divisor.                                         |      |
| 10  | First derivative of ratio spectra of MET using         | 57   |
|     | CANAD divisor.                                         |      |
| 11  | Second derivative of ratio spectra of CANA & MET       | 58   |
|     | using CANAD, showing zero-crossing point of MET.       |      |
| 12  | First derivative of ratio spectra of MET & CANA        | 59   |
|     | using CANAD, showing zero-crossing point of            |      |
|     | CANA.                                                  |      |
| 13  | Ratio spectra of CANA using CANAD divisor.             | 60   |
| 14  | MCR spectra of CANA using CANAD divisor.               | 61   |
| 15  | Ratio spectra of different concentration of MET using  | 62   |
|     | CANAD divisor.                                         |      |
| 16  | MCR spectra of MET using CANAD & CANA                  | 63   |
|     | divisors.                                              |      |
| 17  | Linearity of peak amplitudes of DD <sup>2</sup> to the | 64   |
|     | corresponding concentrations of CANA using             |      |
|     | CANAD divisor.                                         |      |
| 18  | Linearity of peak amplitudes of DD <sup>1</sup> to the | 65   |
|     | corresponding MET concentrations using CANAD           |      |
|     | divisor.                                               |      |