

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Role of Capnograghy during weaning from mechanical ventilation in patients with chronic obstructive pulmonary disease

Thesis

Submitted for Partial Fulfillment of Master Degree
In Chest Diseases

Ramy Karem Ali Ali (M.B.,B.Ch.)

Supervised by

Prof. Dr. Yasser Mostafa Mohammed Mostafa

Professor of Chest Disease Faculty of Medicine - Ain Shams University

Prof. Dr. Tamer Mohammed Ali

Professor of Chest Disease Faculty of Medicine - Ain shams University

> Faculty of Medicine Ain Shams University 2020

List of Contents

Ti	Title Page		
•	List of Abbreviations		
•	List of Tables IV		
•	List of FiguresVI		
•	Introduction		
•	Aim of the Study		
•	Review of Literature		
	- Chapter (I): COPD and Exacerbations of		
	COPD4		
	- Chapter (II): Mechanical ventilation in		
	patients with COPD21		
	- Chapter (III): Capnography46		
	- Chapter (IV): Rule of capnography during		
	weaning from mechanical ventilation 59		
•	Patients and Methods		
•	Results		
•	Discussion		
•	Summary 96		
•	Conclusion and Recommendations99		
•	References		
•	Arabic Summary		

List of Abbreviations

ABGArterial Blood Gases AC.....Assist Control AECOPDAcute Exacerbation of chronic obstructive pulmonary disease **AF**.....Atrial Fibrillation **ARF**Acute Respiratory Failure **AUC**Area under Curve CHFCongestive Heart Failure **CKD**......Chronic Kidney Disease **COPD**......Chronic Obstructive Pulmonary Disease CPAPContinuous Positive Airway Pressure DBPDiastolic Blood Pressure **DM**.....Diabetes Mellitus ECGElectrocardiogram **EDs**.....Emergency Departments **EMS**.....Emergency Medical Services **EPAP**Expiratory Positive Air Way Pressure ETCO₂End Tidal Carbon Dioxide FEV1 Forced Expiratory Volume in One Second FIO2Fraction of Inspired Oxygen **FVC**Forced Vital Capacity **GOLD**.....Global Initiative for Chronic Obstructive Lung Disease

Hb.....Haemoglobin

HCV.....Hepatitis C Virus

List of Abbreviations

HTNHypertension ICUIntensive Care Unit IFRInspiratory Flow Rate **IHD**.....Ischemic Heart Disease IMV.....Intermittent Mandatory Ventilation **IOC**Inspiratory Capacity IPAPInspiratory Positive Air Way Pressure K.....Serum Potassium LOS.....Length of Stay MVMechanical Ventilation NaSodium **NPPV**Non-Invasive Positive Pressure Ventilation **NPV**Negative Predictive Value PACO₂......Partial Arterial Pressure of Carbon Dioxide **PC**.....Pressure Controlled **PEEP**Positive End Expiratory Pressure PEFRPeak Expiratory Flow Rate PETCO₂Partial Pressure of Exhaled Carbon Dioxide PIP.....Peak Inspiratory Pressure **PO2**Partial Pressure Oxygen **PPCs**Post-Operative Pulmonary Complications PPLATEPlateau Pressure **PPV**.....Positive Predictive Value **PSV**.....Pressure Support Ventilation

List of Abbreviations

ROC.....Receiver Operating Characteristic RRRespiratory Rate RSBIRapid Shallow Breathing Index SBP.....Systolic Blood Pressure **SBT**.....Spontaneous Breath Trial **SD**.....Standard Deviation **SGOT**.....Serum Oxaloacetic Glutamic Transaminase **SGPT**Serum Glutamic **Pyruvic** Transaminase **SIMV**.....Synchronized Intermittent Mechanical Ventilation SPO2Saturation of Peripheral Oxygen **Temp**......Temperature **TLC**.....Total Leucocytic Count V/QVentilation Perfusion VACVolume Assist Control VAP......Ventilator Associated Pneumonia **VT**.....Tidal Volume WOBWork of Breath **WOB**Work of Breathing

List of Tables

Table No.	Title Page
Table (1):	Staging of COPD, COPD indicates chronic obstructive pulmonary disease; FEVb forced expiratory volume in 1 second; FVC, forced vital capacity
Table (2):	Risk factors associated with increased COPD exacerbation
Table (3):	Pathogens responsible for chronic obstructive pulmonary disease exacerbations
Table (4):	Independent risk factors for post- operative pulmonary complications 32
Table (5):	Factors affecting pulmonary gas exchange
Table (6):	Factors affecting respiratory load and muscular competence
Table (7):	The factors affecting ETCO2 60
Table (8):	Patients demography73
Table (9):	Different Co morbidities among studied patients
Table (10):	Laboratory data among studied patients
Table (11):	Vital signs of patients at different stages of weaning

List of Tables (Continued)

Table No.	Title Pa	age
Table (12):	Patients weaning outcome from mechanical ventilation	79
Table (13):	Comparison between patients with successful and failed weaning regarding their vital parameters	31
Table (14):	Comparison between patients with successful and failed weaning regarding their ABG and PetPCO2	32
Table (15):	Comparison between patients with successful and failed weaning as regarding their laboratory data	33
Table (16):	Duration of MV support and LOS in hospital in successful and failed weaning group	34
Table (17):	Comparison between PCO2 and PetCO2 at the beginning of SBT in prediction of successful weaning	35
Table (18):	Comparison between PCO2 and PetCO2 at the end of SBT in prediction of successful weaning	36
Table (19):	ABG and PetCO2 changes before and after SBT	37

List of Figures

Figure No.	Title Pag	ge
Fig. (1):	Patients with frequent exacerbations 15	 5
Fig. (2):	Waterfall phenomenon and its relation with critical pressure	5
Fig. (3):	Expiratory hold maneuver to estimate auto-positive end-expiratory pressure	7
Fig. (4):	Generation of auto-positive end- expiratory pressure	3
Fig. (5):	Air trapping in flow-volume loop 28	3
Fig. (6):	(a) Waterfall phenomenon-negative pressure required to trigger the ventilator breath is reduced on application of external positive end-expiratory pressure, (b) effect of applied positive end-expiratory pressure on triggering-extrinsic positive end-expiratory pressure of 5 cm H2O reduces the work of breathing from level A to level B by offsetting the auto-positive end-expiratory pressure in this chronic obstructive pulmonary disease patient with trigger sensitivity of 2 cm H2O	7
Fig. (7):	The normal capnogram 48	3
Fig. (8):	Capnograms during PSA 55	5

List of Figures (Continued)

Figure No.	Title Page
Fig. (9):	Capnogram of data from a normal subject and a subject with asthma 56
Fig. (10):	Capnography showing CO2 waveform
Fig. (11):	Capnograph indicating bronchospasm 66
Fig. (12):	Drager, Infinity TM kappa monitor, Telford, USA71
Fig. (13):	Gender of the studied patients 74
Fig. (14):	Smoking among studied patients74
Fig. (15):	Different Co morbidities among studied patients
Fig. (16):	Patients weaning outcome from mechanical ventilation 80
Fig. (17):	Mortality of the studied cases80
Fig. (18):	ROC curve of PCO2 and PetCO2 at start of SBT in predicting successful weaning
Fig. (19):	ROC curve of PCO2 and PetCO2 after SBT in predicting successful weaning

INTRODUCTION

Chronic obstructive pulmonary disease (COPD), a common preventable and treatable disease, is characterized by persistent airflow limitation that is usually progressive and associated with an enhanced chronic inflammatory response in the airways and the lung to noxious particles or gases (GOLD, 2017).

An acute exacerbation of chronic obstructive pulmonary disease (AECOPD) is a clinical diagnosis made when a patient with COPD experiences a sustained (e.g, 24-48 h) increase in cough, sputum production, and/or dyspnea. AECOPD has clinical consequence ranging from a self-limited illness to progressive respiratory failure necessitating mechanical ventilation. Weaning of these patients may prove difficult and a spontaneous breath trial should be provided before the decision of extubation (*Celli and Barnes*, 2007).

End-tidal carbon dioxide monitoring refers to the noninvasive measurement of exhaled carbon dioxide and has been used to monitor changes in arterial carbon dioxide (*Ahrens and Sona, 2003*).

Capnography is a technique that permits changes in the Carbon dioxide (CO₂) concentration in the patient's airway to be recorded during the respiratory cycle. Monitoring end- tidal CO₂ tension (PetCO₂) might be useful in the critical setting to detect low cardiac output states, esophageal intubation and accidental disconnection from the ventilator (*Stock*, 1988; Hess, 1993).

The use of PetCO₂ as a reflection of PaCO₂ has been explored, and there is controversy over its usefulness as a noninvasive method to approximate PaCO₂ during mechanical ventilation in intensive care medicine (*Clark et al.*, 1992).

In several studies performed on patients under total ventilatory support it has been reported that the values of PetCO₂ at one point in time usually correlate well with the corresponding value of PaCO₂ (*Donati et al.*, 1985; Russell and Graybeal, 1990).

Clinical and noninvasive assessments of oxygenation and hypercapnia by pulse oxymeter and capnograghy are used to monitor the patient during the trial of weaning of mechanically ventilated COPD patient (*Australas*, 2010).

Spontaneous breath trial (SBT) with pressure support 7 cm H_2O , and positive end expiratory pressure (PEEP) 3 cm H_2O for a maximum of 2 hours duration was documented as a method of weaning by research and clinical experience (*Esteban et al.*, 1997; Brochard, 1991).

AIM OF THE STUDY

To evaluate the role of capnography in COPD patient during weaning from mechanical ventilation.