

بسم الله الرحمن الرحيم

$\infty\infty\infty$

تم عمل المسح الضوئي لهذة الرسالة بواسطة / سامية زكى يوسف

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

اتوتكنوبوج

ملاحظات:

- بالرسالة صفحات لم ترد بالأصل
 - بعض الصفحات الأصلية تالفة
- بالرسالة صفحات قد تكون مكررة بالرسالة صفحات قد تكون مكررة
 - بالرسالة صفحات قد يكون بها خطأ ترقيم

STUDIES ON THE EFFECT OF SOME CITRUS ROOTSTOCKS ON GROWTH AND PRODUCTIVITY OF SOME MANDARINS CULTIVARS

By

Ebtsam Moubark Hamza El-Shafee B.Sc. Agriculture, Minufiya University (1996)

Thesis

Submitted in Partial Fulfillment of the Requirements of the Degree of Master of Science

In

Agricultural Sciences (Hortculture, Pomology)

Department of Horticulture,
Faculty of Agriculture, Minufiya University

EGYPT

1 d

بالتاليالي

ANCE SERVICE OF THE S

APPROVAL SHEET

Name: Ebtsam Moubark Hamza El-Shafee

Title of the Thesis: Studies on the effect of some citrus rootstocks on growth and productivity of some mandarins cultivars

Examiner's Committee

Approved

1. Prof. Dr.

2. Prof. Dr.

3. Prof. Dr.

4. Prof. Dr.

Soher A. Ahmel

M.R.M. Rabel

M. H. Elhagols

Date: 23 /10/1999

Committee in charge.

SUPERVISION COMMITTEE

1. Prof. Dr. S. A. Ahmed.

Saher 7. Ohmed

Horticulture Department, Faculty of Agriculture, Minufiya University, Egypt.

2. Prof. Dr. A. S. Atalla.

A.S. Atalla

Horticulture Department, Faculty of Agriculture, Minufiya University, Egypt.

3. Prof. Dr. M. R. M. Rabeh.

M.R.M.Rahe

Horticulture Department, Faculty of Agriculture, Minufiya University, Egypt.

4. Prof. Dr. M. H. Saad Allah.

M.H. Sanad Allech

Citrus Res. Dep., Hort. Res. Inst., Agric. Res. Center, Cairo, Egypt.

VCKNOMFEDGEWENL

Isom and forever I fell always indebted to God the most

beneficent and merciful.

Agriculture, Minufusa University, for the plan of research, sincere help I wish to express my sincere thanks to Prof. Dr. S.A. Ahmed, Professor of Toculty of Professor

I am indebted to Prof. Dr. A. S. Atalla, Professor of Pomology, guidance and containuous encouregment.

guidance. Intioni de Province, Inculty of Agriculture, International to International Line to International Line of the Continuation of

Inspartment for Horticulture, Inculty of Agriculture, Minulture and encouragement Deep thanks to Pros. Dr. M. R. M. Raben, Professor of Pomology,

γιουμ κηθερό ριο εβρεηπούγου านอารากมอสกร

เราการเกาการ เกาการเการา Research Institute, for his valuable help, tactful guidance and Dr. M. H. Saadalla, Chief of Citrus Research Department, Horticulture

to this fourth of Agriculture, Minufina University, for the Dr. D. E. Rayes, Associate Professor of Pomology, Department of

. इंगाटहार पेर्टी युपांविकाटह

Deep thanks are also due to all stall members of Horticulture

Historing of Jaculty of Agriculture, Minufula University.

Deep thanks to Dr. A. H. Selem Associate Professor of Thysiology.

Lomology Department, Alex, University and all staff members especially Mr. Said Katab, Chief of Pomology Department for their kind Center of the American University, Cairo, Prof. Dr. A. Shahien, Chief of I am indebted to Pros. Dr. M. Sabah, Chief of Desert Department

Special thanks are due to Prof. Dr. M. H. El-Masry, Chief of ·djəy

01 मार्गिया के विकास के विकास के विकास के विकास कि विकास के विकास के विकास के विकास के विकास के विकास के विकास Ηοιτιςτίταις Κεςεαιτά Στατίου οf South Il Tahrir, for his sincere help.

their containuous help and encouregment. my best friends, Miss. Apear Ali Dahab and Mr. Mohamed Freag, for

Father, Mother, Brother and Sisters, espeially Eman for their kind help filmot un deep gratitude and sincere appreciation to My Family

and containuous encouregment.

CONTENTS

1.	INTRODUCTION	Page
2.	REVIEW OF LITERATURE	5
3.	MATERIALS AND METHODS	28
4.	RESULTS AND DISCUSSIONS	41
	I. Morphological characteristics	41
	Tree height and diameter	41
	Tree growth vigour	43
	The compatibility % (scion / stock ratio)	48
	Vegetative growth	51
	Growth cycles	51
	Fremont tangerine	53
	Number and percentage of vegetative shoots	53
	Shoot length and diameter (cm)	55
	Number of leaves	57
	Leaf area	57
	Minneola tangelo	58
	Number and percentage of vegetative shoots	58
	Shoot length and diameter	61
	Number of leaves	62
	Leaf area	63
	II. Mineral composition	64
	Macro-nutrients	64
	Fremont tangerine	64
	Minneola tangelo	67
	Micro-nutrients	69
	Fremont tangerine	69
	Minneola tangelo	72
	III. Physiochemical studies	73
	Relative water deficiet	73
	Fremont tangerine	76
	Minneola tangelo	76
	Determination of leaf photosynthetic pigments	78

IV. Fruitability	
Flower and pollen studies	
Fremont tangerine	
Sex ratio	
Pollen grain viability	
Pollen grain stainability with acetocarmine	
Pollen grain germination	*****
Minneola tangelo	
Sex ratio	******
Pollen grain viability	
Pollen grain stainability with acetocarmine	
Pollen grain germination	
Fruit set and drop	
Fremont tangerine	
Fruit set %	
June drop %	
Pre-harvest drop %	,
Horticultural fruit set %	
Horticultural fruit set as % of Sour orange	******
Minneola tangelo	
Fruit set %	.,,,
June drop %	
Pre-harvest drop %	
Horticultural fruit set %	
Horticultural fruit set as % of Sour orange	
V. Determination of fruit maturity and q	uality
Determination fruit maturity	
Fruit weight	
Fruit size	
Juice weight	
Total soluble solids % (TSS%)	
Total acidity	
Total soluble solids / acid ratio	
Vitamin C content	
Rind colour	
Envit avality	

Physical properties of fruit	
Fremont tangerine	
Fruit weight and size	
Fruit shape (L / D)	•••••••
Rind thickness	
Minneola tangelo	
Fruit weight and size	
Fruit shape (L / D)	
Rind thickness (mm)	
Fremont tangerine	
Pulp weight and percentage	
Rind weight and percentage	
Juice weight and percentage	
Seed number and weight	
Minneola tangelo	
Pulp weight and percentage	
Rind weight and percentage	
Juice weight and percentage	
Seed number and weight	
Chemical properties of fruits	
Fremont tangerine	
Total soluble solids % (TSS%)	.,
Total acidity of fruit juice	
Total soluble solids / acid ratio	
Fruit juice content of vitamin C	
Minneola tangelo	
Total soluble solids % (TSS%)	
Total acidity of fruit juice	
Total soluble solids / acid ratio	***************************************
Fruit juice content of vitamin C	
VI. Fruit yield	
Fremont tangerine	
Minneola tangelo	
SUMMARY	
REFERENCES	

List of Appendices

		Page
A.	Appendix:	
1.	A comparison between Fremont tangerine and Minneola tangelo regarding both harvesting date and fruit characteristics	29
2.	Physical and chemical analysis of the soil	
	a. Soil physical analysis	30
	b. Soil chemical analysis	30
	c. Available nutrient elements (ppm)	31

List of Table

No.		Pag
1.	The influence of different rootstocks on the different parameters of tree vigour of both Fremont tangerine and Minneola tangelo cvs.	42
2.	Growth cycles of Fremont tangerine and Minneola tangelo as affected by different rootstocks	. 52
3.	Vegetative growth of Fremont tangerine as affected by different rootstocks	54
4.	Vegetative growth of Minneola tangelo as affected by different rootstocks	59
5.	Macro nutrients leaf content as affected by different rootstocks in Fremont tangerine	6:
6.	Macro nutrients leaf content as affected by different rootstocks in Minneola tangelo	6
7.	Micro nutrients leaf content as affected by different rootstocks in Fremont tangerine and Minneola tangelo	7
<i>8</i> .	Relative water deficiet as affected by different rootstocks in Fremont tangerine and Minneola tangelo	7
9.	Photosynthetic pigments as affected by different rootstocks in Fremont tangerine and Minneola tangelo	79
10.	Percentage of perfect and staminate flowers as well as percentage of pollen grain viability as affected by different rootstocks	8:
11.	Fruit set and drop as affected by different rootstocks in Fremont tangerine	. 8'
12.	Fruit set and drop as affected by different rootstocks in Minneola tangelo	9:

<i>13</i> .	Determination of Fremont tangerine fruit maturity expressed
	as fruit weight, size and juice weight as affected by different rootstocks
14.	Determination of Minneola tangelo fruit maturity expressed as fruit weight, size and juice weight as affected by different rootstocks
<i>15.</i>	Determination of Fremont tangerine fruit maturity expressed as TSS %, Acidity %, TSS / acid ratio and vitamin C as affected by different rootstocks
<i>16</i> .	Determination of Minneola tangelo fruit maturity expressed as TSS %, Acidity %, TSS / acid ratio and vitamin C as affected by different rootstocks
<i>17</i> .	Change in rind chlorophyll content (ppm) as affected by rootstocks in Fremont tangerine
18.	Physical fruit properties as affected by different rootstocks in Fremont tangerine
<i>19</i> .	Physical fruit properties as affected by different rootstocks in Minneola tangelo
20.	Fruit physical properties as affected by different rootstocks in Fremont tangerine
21.	Fruit physical properties as affected by different rootstocks in Minneola tangelo
<i>22</i> .	Fruit chemical properties of Fremont tangerine as affected by different rootstocks
23.	Fruit chemical properties of Minneola tangelo as affected by different rootstocks
<i>24</i> .	Fruit yield as affected by different rootstocks in Fremont tangerine and Minneola tangelo

List of Figure

No.		Page
1.	The influence of different rootstocks on tree canopy of both Fremont tangerine and Minneola tnagelo	44
2.	Relative water deficiet as affected by different rootstocks in Fremont tangerine	75
3.	Relative water deficiet as affected by different rootstocks in Minneola tangelo	77
4.	Chlorophyll-a + b as affected by different rootstocks in Fremont tangerine and Minneola tangelo	81
5.	Final fruit set % of Fremont tangerine as affected by different rootstocks	90
6.	Final fruit set % of Minneola tangelo as affected by different rootstocks	94
7.	Fruit weight as affected by different rootstocks in Fremont tangerine and Minneola tangelo	114
<i>8</i> .	Pulp weight as affected by different rootstocks in Fremont tangerine and Minneola tangelo	129
9.	Total soluble solids as affected by different rootstocks in Fremont tangerine and Minneola tangelo	139
10.	Cumulative yield as affected by different rootstocks in Fremont tangerine and Minneola tangelo	148

1. INTRODUCTION

1. INTRODUCTION

Citrus is one of the most important yield in the world. World production of citrus fruits continues on up word trend. Total world citrus production in 1961 amounted to about 24 MMT (69% oranges, 11% lemon and lime and 9% grapefruit) and is profect in 1990 at about 71 MMT (69% oranges, 14% tangerines, 10% lemon and limes and 7% grapefruit). More than 125 countries and torritories produce some type of citrus fruits, in 1983 was accounted for by the ten large products: Viz., United State (22.2%) Brazil (18.6%), Japan (6.6%), Spain (5.5%), Haly (4.8%), Mixico (4.0%), Argentina (2.8%), Israel (2.6%), Turkey (2.6%) and Egypt (1.8%) (Wardowski *et al.*, 1986).

In Egypt, the total area under citrus cultivation in 1997 was 340,429 Feddan amounted to about 2, 242, 520 tons, the average yield / feddan 7.2 ton. While, the total export tradition for the same year was about 181926 tons (MTI – ATUT, 1997).

In Behera Governorate, in 1997, total citrus area was 44, 217 feddan, yielded about 325, 749 ton, average yield/feddan was 7.44 ton.

It has been stated that fruit growing is essentially photosynthesis management. This management must recognize the importance of the trees's roots, particularly when a specific rootstock.

Kolesnikov (1971) stated that the root of fruit plants is as active as the leaves and that root system as a whole interacting with the above ground system, plays an important role in growth, development and