

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

The role of ultrasound elastography in evaluation for axillary lymph nodes of patients with breast cancer

Thesis

Submitted for partial fulfillment of Master's degree in Radiodiagnosis

Presented by

Mariam Kamal Fawzy Mikhail

M.B.B.CH. - Ain Shams University

Supervised by

Prof. Dr. Ahmed Mohamed Monib

Professor of Radiology
Faculty of Medicine, Ain Shams University

Ass.Prof.Dr. Mohamed Gamal Fldin

Assistant Professor of Radiology Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2020

Acknowledgment

First and foremost, I feel always indebted to **God**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to Prof. Dr. Ahmed Mohamed Monib, Professor of Radiology Faculty of Medicine, Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Ass. Prof. Dr. Mohamed Gamal Eldin, Assistant Professor of Radiology Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

Mariam Kamal

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iv
Introduction	1
Aim of the Work	4
Review of Literature	
Anatomy of Axillary Lymph Nodes	5
Pathophysiology of Axillary Lymphadenopathy	y12
Conventional Ultrasound and Ultrasound Elas	stography22
Patients and Methods	37
Results	42
Illustrative Cases	54
Discussion	65
Summary & Conclusion	73
References	75

List of Tables

Table No.	Title	Page No.
Table (1):	Elasticity Scoring System for Axillary Nodes	
Table (2):	Final diagnosis by pathological examir	
Table (3):	Distribution of age in the examined pa	tients 44
Table (4):	The mean age \pm standard deviation	of the
	benign and malignant groups of examined patients	of the
Table (5):	The mean \pm standard deviation of trans	nsverse
	diameter, short axis, long axis/short di	
	(L/S)diameter ,cortical thickness,	
	thickening shape and state hilum	
m 11 (a).	examined lymph nodes	
Table (6):	The mean ± standard deviati	
	longitudinal axis, short axis, longitudinal transverse diameter ratio and	
	thickness	
Table (7):	The focal thickening, shape and s	
	hilum in benign and malignant lymph	
Table (8):	Cutoffs of significant B mode criter	ria and
	their diagnostic performance	49
Table (9):	Diagnostic criteria of B mode criteria	49
Table (10):	Diagnostic performance of the B	
	summation score (ROC curve analysis)	49
Table (11):	Distribution of elasticity score in beni	_
	malignant lymph nodes. (Chi-squared	
Table (12):	Cutoff value of Elasticity Score a	
	diagnostic performance. (ROC	
m.11. (10)	analysis)	
Table (13):	Median value, of strain ratio in beni malignant nodes. (T test)	~
Table (14):	Best Strain ratio cutoff value a	
1 aute (14).	diagnostic performance (ROC curve an	

List of Figures

Fig. No.	Title Page No.
Figure (1):	US of the normal anatomy at the medial and lateral margins of axillary level Transverse scan of the medial aspect of level I along the margin of the pectoralis muscles demonstrates the lateral thoracic artery (arrow) and a nearby normal level I lymph node
Figure (2):	The lymph nodes and vessels associated with the left axilla
Figure (3):	Lymph vessels of the breast and the draining axillary and supraclavicular nodal groups
Figure (4):	Algorithm for axillary assessment in patients with locally advanced invasive breast cancer
Figure (5):	Normal lymph node morphology20
Figure (6):	Metastatic lymph node morphology21
Figure (7):	Hallmark of Lymph Node Metastasis24
Figure (8):	A metastatic axillary lymph node that is entirely hypoechoic, demonstrating complete replacement of the fatty hilum
Figure (9):	Elastography
Figure (10):	Elasticity scoring system for axillary lymph nodes
Figure (11):	Schematic RTE scoring of hypoechoic regions in the ALNs with hila (Pattern I) 31
Figure (12):	Schematic RTE scoring of all ALNs without hila (Pattern II)
Figure (13):	Effect of position of reference region on strain ratio

List of Figures cont...

Fig. No.	Title	Page No.
Figure (14):	Histogram histological types of lyn of the study group.	_
Figure (15):	Pie chart representing percentage and malignant lymph nodes in t group.	the study
Figure (16):	Bar chart representing L/S distribution in benign and malignation nodes	diameter ant lymph
Figure (17):	Graph demonstrates mean and deviation of cortical thickness in be malignant lymph nodes	enign and
Figure (18):	Bar chart demonstrates the state in benign and malignant lymph no	of hilum
Figure (19):	Graph demonstrates the distributed elasticity scores in benign and relymph nodes	nalignant
Figure (20):	Graph shows mean values and deviation of strain ratio in bermalignant nodes	standard nign and
Figure (21):	Receiver operating characteristic curve for L/S diameter, cortical test and strain ratio.	ic (ROC) thickness,
Figure (22):	US of the RT. Axilla	
Figure (23):	Strain Elastography of the RT. Axi	
Figure (24):	US of the RT. Axilla	<u> </u>
Figure (25):	Strain Elastography of the RT. Axi	llary LN 58
Figure (26):	US of the LT. Axilla	59
Figure (27):	Strain Elastography of the LT. Axi	llary LN 61
Figure (28):	US of the LT. Axilla	63
Figure (29):	Strain Elastography of the LT. Axi	llary LN 64

List of Abbreviations

Abb.	Full term
ΔΙΝ	. Axillary lymph nodes
	. Breast cancer subtypes
	. Core needle biopsy
	• •
	. Computed tomography
	. Ductal carcinoma in situ
	Estrogen receptor
	Fine needle aspiration cytology
	. Human epidermal growth factor receptor 2
	. Human immunodeficiency virus
IDC	. Invasive duct carcinoma
ILC	. Invasive lobular carcinoma
L	. Longitudinal axis
L/S	. Long axis/short axis
LCIS	. Lobular carcinoma in situ
LN	. Lymph node
MRI	. Magnetic resonance imaging
N	. Nodes
PET	. Positon-emission tomography
PR	. Progesterone receptor
RTE	. Real-time elastography
S	. Short axis
S/L	. Short axis /long axis
SD	. Standard deviation
SE	. Sensitivity
SLE	. Systemic lupus erythematosus
SLNB	. Sentinel lymph node biopsy

List of Abbreviations cont...

Introduction

ears of cancer statistics have demonstrated that breast cancer is the most common cancer and the second leading cause of cancer-related death in women worldwide. Axillary lymph node status remains a major prognostic indicator for early breast cancer, affecting the clinical staging and patient selection for surgical procedure and adjuvant systemic therapy (Tang et al., 2020).

The status of the axillary lymph node is one of the independent factors influencing the prognosis of patients with breast cancer. The 5-year survival rate of breast cancer cases with axillary lymph node metastasis decreases by 40% compared to that of non-metastatic patients (*Riis*, 2020).

Currently. sentinel lymph node biopsy (SLNB), traditional ultrasound-guided core needle biopsy (CNB), and fine-needle aspiration cytology (FNAC) are the most common procedures for identifying axillary nodal metastasis in breast cancer patients; however, these methods are invasive, requiring additional time for pathological diagnosis, and false-negative results might affect the efficacy of biopsy, due to improper selection of the target lymph node. Therefore, the use of noninvasive imaging techniques to help predict nodal status before biopsy is of great value (Tang et al., 2020).

1

Ultrasonography, mammography, computed tomography (CT), magnetic resonance imaging (MRI), and combined positon-emission tomography (PET)/CT are common noninvasive preoperative methods used in the diagnosis of axillary lymph node. Oblique radiography of mammography can help to detect partial abnormal axillary lymph nodes and reveal if there is lymph node metastasis by evaluating morphology, size, and density (Wu et al., 2016).

But the evaluation of axillary lymph nodes using mammography is not applicable because mammography cannot cover the entire axillary. Breast MRI has excellent soft-tissue resolution; however, axillary lymph nodes cannot be included in their entirety because of the limited range of the breast coil (Javid et al., 2010).

Ultrasound, as a non-invasive technique, is often used to distinguish malignant from benign axillary lymph nodes based on morphological characteristics preoperatively. Ultrasound is a convenient tool as it provides real-time imaging, high softtissue resolution, feasibility and cost-efficiency; however, traditional ultrasound has moderate sensitivity for identifying malignant lymph nodes and false-positive results leading to unnecessary biopsy.

imaging, With advances in medical ultrasound elastography has received considerable attention in the last years for its non invasive ability to assess tissue stiffness in various organs (Sigrist et al., 2017).

Real-time (strain) elastography (RTE) and shear-wave elastography (SWE) are the two most widely elastographic techniques. RTE demonstrates a colour map imposed on the 2D image, which is obtained through applying constant stress to the tissue. It can be used qualitatively (elasticity score) or semi-quantitatively (strain ratio) to access the stiffness of lesions (Xu et al., 2018).

Our study will use real time elastography

AIM OF THE WORK

To investigate the role of strain elastography in the diagnosis of axillary lymph nodes in patients with breast cancer.