

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سامية زكى يوسف

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

Synthesis and Characterization of Some Nanomaterials for Environmental Applications

A Dissertation Submitted for the Degree of Doctor of Philosophy of Science

In

Chemistry

(Physical Chemistry)

Presented by

Mohammad Samir Elkoth Salem

(M.Sc. Degree, Chemistry, Suez Canal University 2015)

(2022)

Synthesis and Characterization of Some Nanomaterials for Environmental Applications

A thesis submitted by

Mohammad Samir Elkoth Salem

(M.Sc. Degree, Chemistry, Suez Canal University, 2015)

For the requirement of Ph.D. degree of science in Physical Chemistry

<u>Supervised by</u>

Prof. Dr.
Hamdi Hassanien Hassan
Professor of Physical chemistry
Faculty of Science
Ain Shams University

Dr.
Amr Ahmed Nada
Assoc. Professor of
Environmental chemistry
Egyptian Petroleum Research Institute

(2022)

Candidate: Mohammad Samir Elkotb Salem

Thesis title: Synthesis and Characterization of Some Nanomaterials for Environmental Applications

Thesis supervised by:

Name Position Signature

Prof. Dr.

Hamdi Hassanien Hassan

Chemistry - Faculty of Science- Ain Shams
University.

Dr. Amr Ahmed NadaAssoc. Professor of
Environmental chemistry -

Petroleum research institute.

Thesis examination committee:

Name Position Signature

Prof. Dr. Professor of Physical

Mohamed Mokhtar Mohamed chemistry - Faculty of
Science- Benha University

Prof. Dr. Professor of Physical chemistry - Faculty of Science- Mansoura

University.

Prof. Dr.

Hamdi Hassanien Hassan

Chemistry - Faculty of Science- Ain Shams
University.

Synthesis and Characterization of Some Nanomaterials for Environmental Applications

Name: Mohammad Samir Elkotb Salem

Degree: Doctorate

Department: Chemistry

Faculty: Science

University: Ain Shams

Graduation year: 2006

Awarding year: 2022

Acknowledgment

Praise be to **Allah** until praise reaches its end. Praise be to **Allah**; through whose grace the progress and completeness of this work was possible.

I would like to express my deepest thanks and gratitude to my supervisor, **Prof. Dr. Hamdi H. Hassan**, Professor of Physical Chemistry—Faculty of Science—Ain Shams University, for his kind supervision, cooperation, and faithful help.

I would also like to express my special and heartfelt thanks to **Dr. Amr A. Nada**, Associate Professor of Environmental Chemistry—Egyptian Petroleum Research Institute, for his kind supervision and his patience in helping me complete this endeavor.

Finally, and most importantly, I would like to express my heartfelt gratitude and appreciation to my dear father and sister souls, as well as my dear mother, sister, and brother, for their unending love, sacrifices, and moral support. I would also like to express my heartfelt and endless thanks to my wife (Sara) and my children (Malek & Maleeka) for their sacrifices, encouragement, and love.

Mohammad Samir

Contents

	Page
List of Tables	V
List of Figures	VII
List of Abbreviations	VIII
Abstract	IX
Aim of work	Х
Chapter I: Introduction and literature survey	1
1. Introduction and literature survey	1
1.1 Photocatalysis & photocatalyst	1
1.1.1 Mechanism of Photocatalysis	6
1.2 Titanium oxide	7
1.2.1 Synthesis of TiO₂ Photocatalyst	9
1.2.1.1 Spin coating technique	10
1.2.1.2 Dip coating technique	11
1.2.1.3 Electrospinning technique	12
1.2.1.4 Hydrothermal technique	15
1.2.1.5 Chemical Vapor Deposition technique (CVD)	17
1.2.1.6 Atomic layer deposition (ALD)	18
1.2.2 Modifications of TiO ₂	20

1.2.2.1 Metal doping	20
1.2.2.2 Non-metal doping	24
1.2.2.3 Co-doping	26
1.2.2.4 Nano-structured TiO ₂	28
1.2.2.5 Coupling photocatalysts (composite).	29
1.2.2.6 Sensitization	30
1.2.2.7 Substitution	32
1.3 Graphene Oxide and reduced graphene oxide: Methods of Preparation	33
1.3.1 Dual composites of RGO	37
1.4 Boron nitride: Syntheses of BN and semiconductor/BN composites	38
1.4.1 Synthesis of BN	39
1.4.1.1 Exfoliation technique (Chemical and Mechanical)	39
1.4.1.2 Template approach	40
1.4.1.3 Self-assembly (template free)	40
1.4.2 Syntheses of semiconductor/BN composites	41
1.4.2.1 Ball-milling method	41
1.4.2.2 In-situ growth method	42
1.4.2.3 Thermal condensation method	42
1.5 Photocatalysis applications	43
1.5.1 Pollutant degradation	43
1.5.1.1 Water pollution	43

1.5.1.2 Air pollution	45
1.5.2 Hydrogen production	47
Chapter II: Experimental Work	
2. Experimental Work	49
2.1 Materials	49
2.2 Preparations	50
2.2.1 Preparation of Graphene oxide	50
2.2.2 Preparation of exfoliated Boron nitride	50
2.2.3 Preparation of TiO ₂ /rGO and TiO ₂ /BN composite nanofibers	51
2.3 Instrumentation and Characterization	52
2.3.1 X-Ray diffraction (XRD) analysis	52
2.3.2 Dispersive Raman spectroscopy	53
2.3.3. Fourier transform infrared spectroscopy (FT-IR)	53
2.3.4 UV/vis Spectrophotometer	53
2.3.5 Scanning electron microscopy (SEM)	53
2.3.6 Brunauer-Emmett-Teller (BET)	54
2.4 Evaluation of Photocatalytic Activity	54
Chapter III: Results and Discussion	
3. Results and Discussion	56
3.1 TiO ₂ /rGO	56
3.1.1 X-Ray Diffraction Analysis (XRD)	56

3.1.2 Raman spectroscopy	57
3.1.3 Fourier transform infrared spectroscopy	59
3.1.4 Scanning Electron Microscope (SEM)	56
3.1.5 BET Surface area (Brunauer, Emmett and Teller)	63
3.1.6 UV-Diffuse Reflectance Spectroscopy (UV–DRs)	63
3.1.7 Photocatalytic Degradation of Tartrazine by TiO ₂ /rGO Nanofibers.	65
3.2 TiO₂/BN	74
3.2.1 X-Ray Diffraction Analysis (XRD)	74
3.2.2 Raman spectroscopy	75
3.2.3 Fourier transform infrared spectroscopy	76
3.2.4 Scanning Electron Microscope (SEM)	77
3.2.5 BET Surface area (Brunauer, Emmett and Teller)	79
3.2.6 UV-Diffuse Reflectance Spectroscopy (UV–DRs)	79
3.2.7 Photocatalytic Degradation of Tartrazine by TiO ₂ /rGO Nanofibers.	81
3.3 Photocatalytic mechanism.	86
Chapter III: Summary & Conclusion	
4. Summary & Conclusion	88
References	90
Published Articles from the Present Thesis	111
Arabic Summary	Í

List of figures

	Page
Figure (1.1) Different types of substances with different band gap.	3
Figure (1.2) Possibilities of reactions between semiconductor and substrate. (A) Reduction. (B) Oxidation. (C) Redox reaction. (D) No reaction.	4
Figure (1.3) Mechanism of Photocatalysis under solar irradiation.	7
Figure (1.4) Different Crystalline phases of TiO₂	9
Figure (1.5) A schematic model describing spin coating technique.	11
Figure (1.6) A schematic model describing dip coating technique.	12
Figure (1.7) A Schematic diagram of the electrospinning technique.	13
Figure (1.8) A Schematic diagram of the hydrothermal technique.	16
Figure (1.9) A Schematic diagram of Chemical Vapor Deposition technique.	17
Figure (1.10) A Schematic diagram of Atomic Layer Deposition technique (1 cycle).	19
Figure (1.11) Schematic illustration of graphene oxide synthesis by chemical oxidation.	35
Figure (1.12) Synthesis of reduced graphene oxide (rGO).	37

Figure (3.1) XRD spectra of the samples TG0, TG1, TG2, TG3 and TG4 nanofibers.	56
Figure (3.2) Raman spectra of TG0, TG1, TG2, TG3 and T nanofibers.	58
Figure (3.3) FTIR for TG0, TG1, TG2, TG3 and TG4.	59
Figure (3.4) SEM images for (a) TG0, (b) TG1, (c) TG2, (d) TG3 and (e) TG4.	61
Figure (3.5) UV–Vis diffuse reflectance spectra of the samples TG0, TG1, TG2, TG3 and TG4.	64
Figure (3.6) (a) tartrazine without catalyst, (b) TG0, (c) TG1, (d) TG2, (e) TG3 and (f) TG4.	66
Figure (3.7) (a) Photodegradation of tartrazine, (b) Kinetic of tartrazine degradation by TZ, TG0, TG1, TG2, TG3 and TG4 and (c) The photodegradation stability curve of tartrazine by TG3.	68-69
Figure (3.8) XRD spectra of the samples TB0, TB2, TB5, TB10 and TB20 nanofibers.	74
Figure (3.9) Raman spectra of TB0, TB2, TB5, TB10 and TB20 nanofibers.	<i>75</i>
Figure (3.10) FTIR for TB0, TB2, TB5, TB10 and TB20.	76
Figure (3.11) SEM images for (a) TBO, (b) TB2, (c) TB5, (d) TB10 and (e) TB20.	77
Figure (3.12) UV–Vis diffuse reflectance spectra of the samples TB0, TB2, TB5, TB10 and TB20.	80
Figure (3.13) (a) tartrazine without catalyst, (b) TB0, (c) TB2, (d) TB5, (e) TB10 and (f) TB20.	82

Figure (3.14) (a) Photodegradation of tartrazine, (b) Kinetic of tartrazine degradation by TZ, TB0, TB2, TB5, TB10 and TB20 and (c) The photodegradation stability curve of tartrazine by TB10.

83-84

Figure (3.15) Photocatalytic degradation mechanism of 86 tartrazine on prepared photocatalysts.

List of Tables

	Page
Table (2.1) Chemicals used in preparation.	49
Table (2.2) Samples named of TG.	52
Table (2.3) Samples named of TG.	52
Table (3.1) BET surface area of TiO_2 nanofibers and TiO_2/rGO composite nanofibers	62
Table (3.2) Band gap of TiO_2 nanofibers and TiO_2/rGO composite nanofibers	63
Table (3.3) Kinetic Parameters for Photocatalytic Activities of TZ, TG0, TG1, TG2, TG3 and TG4	70
Table (3.4) Photocatalytic degradation of tartrazine dye in the presence of different photocatalyst materials	71-72
Table (3.5) BET surface area of TiO_2 nanofibers and TiO_2 /BN composite nanofibers	78
Table (3.6) Band gap of TiO ₂ nanofibers and TiO ₂ /BN composite nanofibers	79
Table (3.7) Kinetic Parameters for Photocatalytic Activities of TZ, TB0, TB2, TB5, TB10 and TB20	85

List of Abbreviations

VB Conduction bands

CB Valance bands

TW terawatt

Eg Band gap

CNTs Carbon nanotubes

ALD Atomic layer deposition

GO Graphene oxide

RGO Reduced graphene oxide

BN Boron nitride

TiO₂/rGO Titanium dioxide doped reduced graphene oxide

TiO₂/BN Titanium dioxide doped boron nitride