

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سامية زكى يوسف

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

ENHANCING THE POWER SYSTEM TRANSIENT STABILITY BY USING STORAGE DEVICES WITH HIGH PENETRATION OF WIND FARMS

By

Mostafa Ismail Elsayed Ismail Kandil

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electrical Power and Mechanics Engineering

ENHANCING THE POWER SYSTEM TRANSIENT STABILITY BY USING STORAGE DEVICES WITH HIGH PENETRATION OF WIND FARMS

By

Mostafa Ismail Elsayed Ismail Kandil

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

in

Electrical Power and Mechanics Engineering

Under the Supervision of

Prof. Dr.

Dr.

Amgad Amin Maged El-Deib

Mohamed Salah Mohamed El-Sobky

Professor

Electrical Power Engineering Department Faculty of Engineering, Cairo University

Angua 21-1200

Associated Professor Electrical Power Engineering Department Faculty of Engineering, Cairo University

ENHANCING THE POWER SYSTEM TRANSIENT STABILITY BY USING STORAGE DEVICES WITH HIGH PENETRATION OF WIND FARMS

By

Mostafa Ismail Elsayed Ismail Kandil

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electrical Power and Mechanics Engineering

Approved by the Examining Committee.

Prof. Hussain Magdy Zain El-din

Electrical Power Engineering Department Faculty of Engineering, Cairo University

Internal Examiner

Prof. Mohamed Abdelaziz Hassan Abdul Rahman.

Electrical Power Engineering Department
Faculty of Engineering, Ain Shams University

External Examiner

Prof. Mohamed Salah Mohamed El-Sobky

Electrical Power Engineering Department Faculty of Engineering, Cairo University

Thesis Main Advisor

Assist. Prof. Amgad Amin Maged El-Deib

Electrical Power Engineering Department Faculty of Engineering, Cairo University

August 51-Dept.

Advisor

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2022 **Engineer's Name:** Mostafa Ismail Elsayed Ismail Kandil

Date of Birth: 12/07/1984 **Nationality:** Egyptian

E-mail: eng.mostafa.oci@gmail.com

Phone: 01033969577

Address: Building 3-B11 El-Waha district, Nasr

City, Cairo

Registration Date: 01/10/2014

Awarding Date: ...13. /.2./...2022.....

Degree: Master of Science

Department: Electrical Power and Mechanics Engineering

Supervisors:

Prof. Dr. Mohamed Salah Mohamed El-Sobky. Assist. Prof. Dr. Amgad Amin Maged El-Deib

Examiners:

Prof. Hussain Magdy Zain El-din

Electrical Power Engineering Department

Faculty of Engineering, Cairo University

Prof. Mohamed Abdelaziz Hassan Abdul Rahman. External Examiner

Electrical Power Engineering Department

Faculty of Engineering, Ain Shams University

Prof. Mohamed Salah Mohamed El-SobkyThesis Main Advisor

Electrical Power Engineering Department Faculty of Engineering, Cairo University

Assist. Prof. Amgad Amin Maged El-Deib

Electrical Power Engineering Department Faculty of Engineering, Cairo University

Title of Thesis: Enhancing the Power System Transient Stability by Using Storage

Devices with High Penetration of Wind Farms.

Key Words: Power system stability, Wind power generation, Stability analysis,

Wind turbines, Renewable energy sources, Batteries, Transient analysis.

Summary:

In this thesis, the energy storage devices were presented to be used in enhancing the power system transient stability under high levels of Wind power penetrations. Study was applied on a benchmark system and used PSSE explore as the simulation software. Different locations of the Energy storage were examined and the optimum location for the system under study was presented.

Internal Examiner

Advisor

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute. I further declare that I have appropriately acknowledged all sources used and have cited them in the reference section.

Name: Mostafa Ismail Elsayed Ismail Kandil. Date: 13 / 02 / 2022.

Signature:

Dedication

Dedicated to the soul of Prof. Magdy Mohamed Ahmed El-Marsafawy. To my wife, my father, my mother, and my little girls Lougina & Lara. Without you all nothing would come out of this work.

Acknowledgments

It is a great pleasure to express my profound gratitude and sincere appreciation to Prof. Dr. Mohamed Salah Mohamed El-Sobky for his faithful supervision and support with a continuous enthusiastic encouragement. Also, I would like to thank my Prof. Dr. Amgad El-Deib for giving me such opportunity of working on my master thesis under his supervision. I want to thank him for his patience, encouragement, and continuous support from which I have learnt the fundamental knowledge of how to search and never to give up. I would also like to thank my parents and my wife. Without you all I would not be able to achieve this master thesis.

Table of Contents

DISCLAIME	ZR	I
DEDICATIO	N	II
ACKNOWLI	EDGMENTS	III
TABLE OF (CONTENTS	IV
LIST OF FIG	GURES	VI
LIST OF TA	BLES	VIII
LIST OF EQ	UTIONS	IX
LIST OF SY	MBOLS AND ABBREVIATIONS	X
ABSTRACT.		XI
CHAPTER 1	: INTRODUCTION AND BACKGROUND	1
	DUCTION	
	ATION	
	EM STATEMENT	
1.4. Organ	NIZATION OF THE THESIS.	2
1.5. LITERA	TURE SURVEY ABOUT WIND POWER PLANTS AND POWER SYSTEM	1 TRANSIENT STABILITY3
CHAPTER 2	: POWER SYSTEM TRANSIENT STABILITY	5
	DUCTION	
	IENT STABILITY.	
	CAL STABILITY STUDIES.	
2.4. Forma	TION OF ADMITTANCE MATRIX	10
2.5. Power	NETWORK AGGREGATION.	11
2.6. СОМРИ	TER SOFTWARE FOR TRANSIENT STABILITY ANALYSIS	13
2.6.1.	Machine model	14
2.6.2.	Exciter model	15
2.6.3.	Governor model	15
2.7. CONCL	USION	16
CHAPTER 3	: WIND ENERGY INTEGRATION IN POWER SYSTEM	S17
3.1.INTROE	DUCTION	17
3.2. WIND T	TURBINE CONCEPTS.	18
3.3. WIND T	TURBINE TYPES.	20
3.4. MODEL	ING ASPECTS OF WIND TURBINES.	23
3.5. Power	SYSTEM SIMULATOR FOR ENGINEERING MODEL.	26
3.6. CONCL	USION.	30
CHAPTER 4	: ENERGY STORAGE DEVICES	31
4.1.INTROE	DUCTION	31
4.2. Types	AND RATINGS OF ENERGY STORAGE DEVICES	32

4.2.1.	Capacitor and Supercapacitors
4.2.2.	Superconducting Magnetic Energy Storage
4.2.3.	Flywheel system35
4.2.4.	Batteries Energy Storage System (BESS)
4.3. Modeli	NG
4.4. Power	SYSTEM SIMULATOR FOR ENGINEERING MODEL
4.5. CONCLU	SION
CHAPTER 5:	SIMULATION AND RESULTS49
5.1.INTROD	UCTION
5.2.IEEE 9	BUS BENCHMARK SYSTEM49
5.3. FIRST P	ENETRATION LEVEL OF WIND POWER
5.4. SECONI	PENETRATION LEVEL OF WIND POWER
5.5. Energy	STORAGE INTEGRATION55
5.5.1.	Simulation results when BESS is located at Bus 1056
5.5.2.	Simulation results when BESS is located at Bus 959
5.5.3.	Simulation results when BESS is located at Bus 760
5.5.4.	Simulation results when BESS is located at Bus 463
5.5.5.	Simulation results when BESS is located at Bus 864
5.5.6.	Increasing power penetration
5.6. CONCLU	USION67
REFERENCE	S69
ADDENIDIY 1	72

List of Figures

Figure 2. 1 Power Angle Curve	6
Figure 2. 2 Classification of power system stability	.8
Figure 2. 3 Y _{bus} Matrix Factorization	
Figure 2. 4 Procedure Steps of Network Reduction	
Figure 2. 5 Generator interconnected models1	
Figure 2. 6 GENSAL and GENROU block diagrams14	
Figure 2. 7 IEET1 block diagram	
Figure 2. 8 WESGOV Block diagram	
Figure 3. 1 Detailed view of the components of wind turbine	
Figure 3. 2 Mechanical power conversion to electrical power in wind turbine	
Figure 3. 3 Power characteristics of wind turbine, Stall control, Pitch control and	
Active pitch control	20
Figure 3. 4 Wind Turbine Types.	
Figure 3. 4 Simple aggregated wind turbines connected to PCC structure	23
Figure 3. 5 Block diagram for the wind turbine simulation model	
Figure 3. 6 Wind Turbine Type 3 Model	.25
Figure 3. 7 Wind Turbine Type 4 Model	
Figure 3. 8 WT3G2 dynamic model block diagram	
Figure 3. 9 WT3E1 dynamic model block diagram	
Figure 3. 10 WT3T1 dynamic model block diagram	
Figure 3. 11 WT3P1 dynamic model block diagram	
Figure 4. 1 Energy Storage Classification	
Figure 4. 2 Typical parts of SMES.	
Figure 4. 3 Worldwide development of SEMS	
Figure 4. 4 FESS parts and section of Flywheel in foundation made by Beacon Power	
Figure 4. 5 the increase share of Li-ion in annual battery storage capacity additions	
global	
Figure 4. 6 The principle of Li-ion Cell	
Figure 4. 7 basic schematic of ESS connection to grid	
Figure 4. 8 Four quadrant operation and control	
Figure 4. 9 BESS Dynamic model parts	
Figure 4. 11 Block diagram for REECCU1 Model	
Figure 4. 12 Block diagram for REPCA1 model	
Figure 5. 1 IEEE 9 bus system single line diagram.	
Figure 5. 2 Frequency Response.	
Figure 5. 3 Rotor Angle (reference taken to G1).	
Figure 5. 4 Voltage at Bus 7 and Bus 8.	
Figure 5. 5 Modified IEEE 9 Bus system with wind farm 79 MW	
Figure 5. 6 Frequency Response.	
Figure 5. 7 Rotor Angle for Gen2 and Gen3.	
Figure 5. 8 Voltage at Bus 7 and Bus 8.	
Figure 5. 9 Frequency response with wind power.	
Figure 5. 10 Rotor Angle for Gen2 and Gen3.	
Figure 5. 11 Voltage at Bus 7 and Bus 8.	
Figure 5. 11 Voltage at Bus 7 and Bus 6. Figure 5. 12 IEEE 9 bus Modified system with BESS at Bus 10.	
Figure 5. 13 Frequency response with wind power 250 MW and BESS at Bus 10	
Figure 5. 14 Rotor Angle of Gen2 and Gen3.	
Figure 5. 15 Active power supplied by BESS at Bus 10.	
Figure 5. 16 State of Charge for the BESS.	
Figure 5. 17 Power Vs Frequency at Bus 10.	5
E' # 10 CI ID'I 'I II 'I BECC	
Figure 5. 18 Charge and Discharge energy provided by the BESS	

Figure 5. 20 Frequency response with BESS at Bus 9.	60
Figure 5. 21 Rotor Angle of Gen 2 and Gen3.	60
Figure 5. 22 IEEE 9 Bus modified system with BESS at Bus 7.	61
Figure 5. 23 Frequency Response.	61
Figure 5. 24 State of Charge of BESS at Bus 7.	
Figure 5. 25 Charge/Discharge Energy drained from BESS	
Figure 5. 26 IEEE SLD with BESS at Bus 4.	63
Figure 5. 27 Frequency Response.	63
Figure 5. 28 IEEE 9 Bus modified system with BESS at Bus 8.	
Figure 5. 29 Frequency Response	
Figure 5. 30 State of Charge of the BESS.	
Figure 5. 31 Charge/Discharge Energy drained from the BESS	

List of Tables

Table 3. 1 WT3G2 dynamic model Parameters	27
Table 3. 2 WT3E1 dynamic model Parameters	
Table 3. 3 WT3T1 dynamic model Parameters	
Table 3. 4 WT3P1 dynamic model Parameters	
Table 4. 1 Analysis of different types of energy storage	
Table 4. 2 REGCA1 parameters	
Table 4. 3 Actual Parameters for REECCU1 Model	46
Table 4. 4 Actual parameters for REPCA1 model	47
Table 5.1 Drained energy from BESS at different penetration levels	66

List of Equations.

Equation 2. 1 Power Angle Equation.	6
Equation 2. 2 Swing Equation.	
Equation 2. 3 Generator Transient Internal Voltage.	
Equation 2. 4 Load Admittance Equation.	
Equation 2. 5 Node Admittance Matrix Equation.	

List of Symbols and Abbreviations

AC Alternating Current

BESS Battery Energy Storage System
CAES Compressed Air Energy Storage

DC Direct Current

DFIG Doubly Fed Induction Generator

EEC Electrical Energy Storage

EEHC Egyptian Electricity Holding Company
EPRI Electric Power Research Institute

FACTS Flexible Alternating Current Transmission System

FEES Flywheel Energy Storage System

GE General Electric
GW Giga Watt

HVDC High Voltage Direct Current

IEEE Institute Of Electronic And Electrical Engineers

IGBT Insulated-Gate Bipolar Transistor.

KW Kilo WattMW Mega Watt

PCC Point Of Common CouplingPCS Power Conditioning SystemPHS Pumped Hydraulic Stations

PMSG Permanent Magnet Synchronous GeneratorPSSE Power System Simulator For Engineering

RES Renewable Energy Source

SCIG Squirrel Cage Induction Generator

SLD Single Line Diagram

SMES Superconducting Magnetic Energy Storage

SOC State Of Charge

STATCOM Static Synchronous Compensator

TES Thermal Energy Storage
 UPS Uninterrupted Power Supplies
 VSC Voltage Source Converter
 VSI Voltage Source Inverter

WECC Water Electricity Coordination Council
 WRIG Wound-Rotor Induction Generator
 WRSG Wound-Rotor Synchronous Generator